Обсуждение участника:ADY

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Статья про RapidMiner уже приведена в божеский вид)
Строка 24: Строка 24:
Я два года назад его изучал... Тогда в документации было написано, что по счастливому совпадению WEKA оказалась полностью совместима с YALE(RapidMiner) :). | [[Участник:ADY|ADY]] 23:55, 21 апреля 2008 (MSD)
Я два года назад его изучал... Тогда в документации было написано, что по счастливому совпадению WEKA оказалась полностью совместима с YALE(RapidMiner) :). | [[Участник:ADY|ADY]] 23:55, 21 апреля 2008 (MSD)
 +
 +
== Возник вот форумный вопрос... ==
 +
Допустим требуется выбрать одну лучшую из двух дискретных функций распределения вероятностей <tex>P1_i</tex> и <tex>P2_i</tex> согласно функционалу качества:
 +
<tex>V(f, P) = \sum{P_i/f_i}</tex>, где <tex>P_i</tex> — истинные значения вероятностей.
 +
 +
Насколько я понимаю, если верно соотношение: <tex>|P_i-P^*_i| < \epsilon_\alpha</tex> (для всех i), при уровне справедливости <tex>1-\alpha</tex>, где <tex>P*_i</tex> — оценка вероятностей на конкретных данных (то есть, другими словами, есть доверительный интервал для оценок вероятностей), то:
 +
<tex>|V(P1, P)-V*(P1, P*)| < \delta1_\alpha</tex> и <tex>|V(P2, P)-V^*(P2, P^*)| < \delta2_\alpha</tex>, а значит:
 +
P1 лучше P2 в смысле функционала V на уровне справедливости <tex>1-\alpha</tex>, если
 +
<tex>\sup_{P: \alpha}{V(P1, P)} < \inf_{P: \alpha}{V(P2, P)}</tex>.
 +
И, аналогично, P2 лучше P1 в смысле функционала V на уровне справедливости <tex>1-\alpha</tex>, если
 +
<tex>sup_{P: \alpha}{V(P2, P)} < \inf_{P: \alpha}{V(P1, P)}</tex>.
 +
Верно ли такое утверждение и как построить доверительные интервалы для вероятности для частотной оценки вероятностей?
 +
| [[Участник:ADY|ADY]] 14:45, 23 мая 2008 (MSD)
 +
;Ответ:
 +
#Понять вопрос затруднительно: не ясно, что такое <tex>V^*</tex>, <tex>P:\alpha</tex>, <tex>\epsilon_\alpha</tex>, <tex>\delta1_\alpha</tex>, <tex>\delta2_\alpha</tex>.
 +
#Уровень ''значимости'', а не справедливости.
 +
#Почему именно такая функция качества, а не какая-либо стандартная: Колмогорова-Смирнова, Кульбака-Лейблера, хи-квадрат?
 +
#Кажется, в формуле <tex>|V(P2, P)-V^*(P1, P^*)| < \delta2_\alpha</tex> имелось в виду <tex>V^*(P2, P^*)</tex>?
 +
#Этому вопросу здесь не место (см. шапку этой страницы). Лучше написать мне письмо — ''[[Участник:Vokov|К.В.Воронцов]] 15:43, 25 мая 2008 (MSD)''.
 +
;Ответ[2]:
 +
# <tex>V^*</tex> - функция V, в которую входят значения с *; <tex>P:\alpha</tex> - множество допустимых значений вероятностей на уровне <tex>\alpha</tex>; <tex>\epsilon_\alpha</tex> - максимальное допустимое отклонение от оценки вероятности на уровне <tex>\alpha</tex>; <tex>\delta1_\alpha</tex>, <tex>\delta2_\alpha</tex> - максимальное допустимое отклонение функционалов на уровне <tex>\alpha</tex>.
 +
# Всегда путаю, что обзывается этим уровнем - мощность критического множества или дополнительного к критическому - посему использовал "уровень справедливости" (мощность множества: множество = все_множество - критическое_множество).
 +
# Такая функция напрямую следует из задачи.
 +
# Да, там действительно была очепятка (должна быть такая же формула, что и для <tex>P1</tex>).
 +
# А где место?... :)
 +
# Спасибо за комментарий. | [[Участник:ADY|ADY]] 13:41, 26 мая 2008 (MSD)

Версия 12:37, 26 мая 2008

Содержание

Вниманию участников

Появилась страница Вниманию участников предназначенная для общения участников по проекту. Предлагаю все идеи и проблемы вносить туда. --Yury Chekhovich 13:56, 29 февраля 2008 (MSK)

О правилах хорошего тона и некоторых отличиях машинного обучения от философии

Уважаемый участник! 1. На персональной странице неплохо бы первым делом представиться. Нам нечего скрывать друг от друга. 2. А вот за этими словами про машинное обучение стоит ли конкретное знание, опыт, десятки раздавленных граблей? Если это просто философствования, то я не рекомендовал бы это держать даже на личной страничке. Пока этот текст абсолютно непонятен. — К.В.Воронцов 13:45, 5 апреля 2008 (MSD)

Статья RapidMiner

Правильнее будет дать описание системы на русском языке и своими словами.

В качестве примера описания системы рекомендую использовать статью WEKA.

Andrew 15:35, 15 апреля 2008 (MSD)

Статья про RapidMiner уже приведена в божеский вид

Андрей, не зевай — я за тебя доделал RapidMiner! Но остальные три статьи за тобой! ;) Давай будем стараться не плодить столь неотёсанных заготовок. Признаться, я и сам грешен, но стараюсь хотя бы наметить структуру, поставить шаблончик {{stub}}) или {{UnderConstruction|Подпись=~~~~}}. Ещё рекомендую заглядывать в англоязычную Википедию и другие непредвзятые источники. На страницах производителей некоторые высказывания носят рекламный характер. Ещё, по RapidMiner-у проверь пож-ста факты: я не слишком глубоко в нём разбираюсь. Например, он все или только многие операторы WEKA поддерживает? — К.В.Воронцов 23:40, 15 апреля 2008 (MSD)

>он все или только многие операторы WEKA поддерживает

Я два года назад его изучал... Тогда в документации было написано, что по счастливому совпадению WEKA оказалась полностью совместима с YALE(RapidMiner) :). | ADY 23:55, 21 апреля 2008 (MSD)

Возник вот форумный вопрос...

Допустим требуется выбрать одну лучшую из двух дискретных функций распределения вероятностей P1_i и P2_i согласно функционалу качества: V(f, P) = \sum{P_i/f_i}, где P_i — истинные значения вероятностей.

Насколько я понимаю, если верно соотношение: |P_i-P^*_i| < \epsilon_\alpha (для всех i), при уровне справедливости 1-\alpha, где P*_i — оценка вероятностей на конкретных данных (то есть, другими словами, есть доверительный интервал для оценок вероятностей), то: |V(P1, P)-V*(P1, P*)| < \delta1_\alpha и |V(P2, P)-V^*(P2, P^*)| < \delta2_\alpha, а значит: P1 лучше P2 в смысле функционала V на уровне справедливости 1-\alpha, если \sup_{P: \alpha}{V(P1, P)} < \inf_{P: \alpha}{V(P2, P)}. И, аналогично, P2 лучше P1 в смысле функционала V на уровне справедливости 1-\alpha, если sup_{P: \alpha}{V(P2, P)} < \inf_{P: \alpha}{V(P1, P)}. Верно ли такое утверждение и как построить доверительные интервалы для вероятности для частотной оценки вероятностей? | ADY 14:45, 23 мая 2008 (MSD)

Ответ
  1. Понять вопрос затруднительно: не ясно, что такое V^*, P:\alpha, \epsilon_\alpha, \delta1_\alpha, \delta2_\alpha.
  2. Уровень значимости, а не справедливости.
  3. Почему именно такая функция качества, а не какая-либо стандартная: Колмогорова-Смирнова, Кульбака-Лейблера, хи-квадрат?
  4. Кажется, в формуле |V(P2, P)-V^*(P1, P^*)| < \delta2_\alpha имелось в виду V^*(P2, P^*)?
  5. Этому вопросу здесь не место (см. шапку этой страницы). Лучше написать мне письмо — К.В.Воронцов 15:43, 25 мая 2008 (MSD).
Ответ[2]
  1. V^* - функция V, в которую входят значения с *; P:\alpha - множество допустимых значений вероятностей на уровне \alpha; \epsilon_\alpha - максимальное допустимое отклонение от оценки вероятности на уровне \alpha; \delta1_\alpha, \delta2_\alpha - максимальное допустимое отклонение функционалов на уровне \alpha.
  2. Всегда путаю, что обзывается этим уровнем - мощность критического множества или дополнительного к критическому - посему использовал "уровень справедливости" (мощность множества: множество = все_множество - критическое_множество).
  3. Такая функция напрямую следует из задачи.
  4. Да, там действительно была очепятка (должна быть такая же формула, что и для P1).
  5. А где место?... :)
  6. Спасибо за комментарий. | ADY 13:41, 26 мая 2008 (MSD)
Личные инструменты