Метод Бенджамини-Иекутиели
Материал из MachineLearning.
|  (→Определение) | |||
| Строка 13: | Строка 13: | ||
| ::<tex>\alpha_1 = \frac{\alpha}{mc}\:,\:\dots\:,\:\alpha_i = \frac{i\alpha}{mc}\:, \:\dots\:, \:\alpha_m = \frac{\alpha}{c}</tex>, | ::<tex>\alpha_1 = \frac{\alpha}{mc}\:,\:\dots\:,\:\alpha_i = \frac{i\alpha}{mc}\:, \:\dots\:, \:\alpha_m = \frac{\alpha}{c}</tex>, | ||
| где <tex>c = \sum_{i=1}^m\frac{1}{i}</tex> | где <tex>c = \sum_{i=1}^m\frac{1}{i}</tex> | ||
| + | |||
| + | Пусть <tex>p_{(1)}\leq \ldots \leq p_{(m)}</tex> — уровни значимости <tex>p_i</tex>, упорядоченные по неубыванию, <tex>H_{(1)}, \ldots, H_{(m)}</tex> — соответствующие <tex>p_{(i)}</tex> гипотезы. Процедура метода Бенджамини-Иекутиели определена следующим образом. | ||
| + | : Шаг 1. Если <tex>p_{(1)}\geq\frac{\alpha}{mc}</tex>, принять гипотезы <tex>H_{(1)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(1)}<\frac{\alpha}{mc}</tex>, отвергнуть гипотезу <tex>H_{(1)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\frac{2\alpha}{mc}</tex>. | ||
| + | : Шаг 2. Если <tex>p_{(2)}\geq\frac{2\alpha}{mc}</tex>, принять гипотезы <tex>H_{(2)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(2)}<\frac{2\alpha}{mc}</tex>, отвергнуть гипотезу <tex>H_{(2)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\frac{3\alpha}{mc}</tex>. | ||
| + | : И т.д. | ||
| Если обозначить число верных гипотез как <tex>\:m_0</tex>, то метод Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне <tex>\frac{m_0}{m}\alpha \leq \alpha</tex> при любых <tex> p_i</tex> и <tex>T_i</tex>. | Если обозначить число верных гипотез как <tex>\:m_0</tex>, то метод Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне <tex>\frac{m_0}{m}\alpha \leq \alpha</tex> при любых <tex> p_i</tex> и <tex>T_i</tex>. | ||
| Строка 28: | Строка 33: | ||
| Тогда можно положить константу <tex>c</tex> равной единице и получить [[метод Бенджамини-Хохберга]]. Другими словами [[метод Бенджамини-Хохберга]] - частный случай метода Бенджамини-Иекутиели. | Тогда можно положить константу <tex>c</tex> равной единице и получить [[метод Бенджамини-Хохберга]]. Другими словами [[метод Бенджамини-Хохберга]] - частный случай метода Бенджамини-Иекутиели. | ||
| + | |||
| == Пример == | == Пример == | ||
Версия 11:35, 6 февраля 2014
Метод Бенджамини-Иекутиели — один из нисходящих методов контроля ожидаемой доли ложных отклонений гипотез (FDR), который, в отличии от метода Бенджамини-Хохберга, не накладывает дополнительных ограничений на статистики гипотез .
| Содержание | 
Определение
Пусть  — семейство гипотез, а 
 — соответствующие им достигаемые уровни значимости. Обозначим за 
 - число отвергнутых гипотез, а за 
 - число неверно отвергнутых гипотез, т.е. число ошибок первого рода.
Ожидаемая доля ложных отклонений гипотез, или FDR, определяется следующим образом
Контроль над FDR на уровне  означает, что
Метод Бенджамини-Иекутиели
Это нисходящая процедура(по аналогии с методом Холма и методом Бенджамини-Хохберга) со следующими уровнями значимости
- , 
 
где 
Пусть  — уровни значимости 
, упорядоченные по неубыванию, 
 — соответствующие 
 гипотезы. Процедура метода Бенджамини-Иекутиели определена следующим образом.
-  Шаг 1. Если , принять гипотезы и остановиться. Иначе, если , отвергнуть гипотезу и продолжить проверку оставшихся гипотез на уровне значимости . 
-  Шаг 2. Если , принять гипотезы и остановиться. Иначе, если , отвергнуть гипотезу и продолжить проверку оставшихся гипотез на уровне значимости . 
- И т.д.
Если обозначить число верных гипотез как , то метод Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне 
 при любых 
 и 
.
Альтернативная постановка
Переходим к модифицированным достигаемым уровням значимости:
- , 
 
где  - 
-ый член вариационного ряда достигаемых уровней значимости
Замечание
Пусть статистики гипотез  независимы или выполняется следующее свойство (PRDS on 
):
- не убывает по - , 
 
где  - множество индексов верных гипотез, 
 - произвольное возрастающее множество, то есть, такое, что из 
 и 
 следует 
.
Тогда можно положить константу  равной единице и получить метод Бенджамини-Хохберга. Другими словами метод Бенджамини-Хохберга - частный случай метода Бенджамини-Иекутиели.
Пример
для проверки используем одновыборочный критерий Стьюдента.
С поправкой Холма(Метод Холма):
- Верных - Неверных - Всего - Принятых - 150 - 24 - 174 - Отвергнутых - 0 - 26 - 26 - Всего - 150 - 50 - 200 
 
С методом Бенджамини-Иекутиели:
- Верных - Неверных - Всего - Принятых - 150 - 10 - 160 - Отвергнутых - 0 - 40 - 40 - Всего - 150 - 50 - 200 
 
Реализации
- MATLAB: Benjamini and Hochberg/Yekutieli Procedure for Controlling False Discovery Rate - реализация на MathWorks.com
-  R: функция p.adjust(с параметромmethod="BY") из стандартного пакетаstatsпозволяет получить модифицированные уровни значимости с учетом поправки метода Бенджамини-Иекуитеил.
Ссылки
- Benjamini, Yoav; Yekutieli, Daniel (2001). "The control of the false discovery rate in multiple testing under dependency". Annals of Statistics 29 (4): 1165–1188. doi. MR 1869245.

