Коэффициент корреляции Пирсона
Материал из MachineLearning.
(Различия между версиями)
(→Определение) |
м (→Слабые стороны) |
||
Строка 28: | Строка 28: | ||
== Слабые стороны == | == Слабые стороны == | ||
- | * Неустойчивость к выбросам | + | * Неустойчивость к выбросам; |
+ | |||
+ | * С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами [[Регрессионный анализ|регрессионного анализа]]; | ||
* Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. Для того, чтобы выяснить отношение между двумя переменными, необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z: | * Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. Для того, чтобы выяснить отношение между двумя переменными, необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z: | ||
Строка 46: | Строка 48: | ||
\end{pmatrix} | \end{pmatrix} | ||
</tex>; | </tex>; | ||
- | |||
== Литература == | == Литература == |
Версия 21:38, 18 ноября 2008
|
Статья в настоящий момент дорабатывается. Венжега Андрей 21:51, 13 ноября 2008 (MSK) |
Определение
Даны две выборки
;
Коэффициент корреляции Пирсена рассчитывается по формуле:
где
- средние значения выборок x и y;
- среднеквадратичные отклонения;
− называют также теснотой линейной связи. - линейно зависимы.
Статистическая проверка наличия корреляции
Гипотеза : Отсутствие линейной связи
Статистика критерия:
- Распределение Стьюдента с степенями свободы.
Слабые стороны
- Неустойчивость к выбросам;
- С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами регрессионного анализа;
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. Для того, чтобы выяснить отношение между двумя переменными, необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z:
Для исключения влияния большего числа переменных:
, где - гл. минор матрицы коэффициентов корреляции переменных ;