Коэффициент корреляции Пирсона
Материал из MachineLearning.
(→Слабые стороны) |
(→Слабые стороны) |
||
Строка 35: | Строка 35: | ||
== Слабые стороны == | == Слабые стороны == | ||
- | * [[Image: | + | * [[Image: Correlation.png|300px|thumb| Четыре различных набора данных, коэффициент корреляции на которых равен 0.81]] Неустойчивость к выбросам; |
* С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами [[Регрессионный анализ|регрессионного анализа]]; | * С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами [[Регрессионный анализ|регрессионного анализа]]; | ||
Строка 43: | Строка 43: | ||
Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z: | Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z: | ||
- | :: <tex>r_{xy \setminus z}=\frac{r_{xy}-r_{xz}r_{yz}}{\sqrt{ \left(\ 1-r_{xz} \right)^2 \left(\ 1-r_{yz} \right)^2}} </tex> - [[Частная корреляция|частный коэффициент корреляции]] | + | :: <tex>r_{xy \setminus z}=\frac{r_{xy}-r_{xz}r_{yz}}{\sqrt{ \left(\ 1-r_{xz} \right)^2 \left(\ 1-r_{yz} \right)^2}} </tex> - [[Частная корреляция|частный коэффициент корреляции]]. |
Для исключения влияния большего числа переменных: | Для исключения влияния большего числа переменных: |
Версия 15:53, 10 января 2009
|
Определение
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Даны две выборки
;
Коэффициент корреляции Пирсона рассчитывается по формуле:
где
- средние значения выборок x и y;
- среднеквадратичные отклонения;
− называют также теснотой линейной связи.
- , тогда - линейно зависимы.
- , тогда - линейно независимы.
Статистическая проверка наличия корреляции
Гипотеза: : Отсутствие линейной связи между выборками x и y ()
Статистика критерия:
- Распределение Стьюдента с степенями свободы.
Критерий:
, где есть α-квантиль распределения Стьюдента.
Слабые стороны
- Неустойчивость к выбросам;
- С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами регрессионного анализа;
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот.
Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z:
Для исключения влияния большего числа переменных:
, где - гл. минор матрицы коэффициентов корреляции переменных ;