Следящий контрольный сигнал
Материал из MachineLearning.
(→Гипотеза адекватности модели) |
(→Гипотеза адекватности модели) |
||
Строка 16: | Строка 16: | ||
== Гипотеза адекватности модели == | == Гипотеза адекватности модели == | ||
- | <tex>H_0</tex>: модель адекватна. | + | '''Гипотеза:''' <tex>H_0</tex>: модель адекватна. |
<tex>\left( E \eps_t = 0,\; E \eps_t \eps_{t+d} = 0, \; d \geq 1 \right)</tex> | <tex>\left( E \eps_t = 0,\; E \eps_t \eps_{t+d} = 0, \; d \geq 1 \right)</tex> | ||
Строка 22: | Строка 22: | ||
При <tex>\gamma \leq 0.1, \; t \rightarrow \infty, \; \hat{\eps}_t \sim N(0,\sigma^2 \frac{\gamma}{2-\gamma}), \; \sigma^2 = E\eps^2_t</tex> - дисперсия шума. <tex> \hat{\eps}_t \approx \sigma/1.2</tex>. | При <tex>\gamma \leq 0.1, \; t \rightarrow \infty, \; \hat{\eps}_t \sim N(0,\sigma^2 \frac{\gamma}{2-\gamma}), \; \sigma^2 = E\eps^2_t</tex> - дисперсия шума. <tex> \hat{\eps}_t \approx \sigma/1.2</tex>. | ||
- | + | '''Статистика:''' Скользящий контрольный сигнал - <tex>K_t</tex> . | |
- | + | ||
- | <tex>K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right]</tex>, где <tex>\Phi_{\alpha}</tex> - α-[[Квантиль|квантиль]] нормального распределения. | + | [[Изображение:NormalDistribCrop.png|220px|thumb|Нормальное распределение. Серым обозначена область ограниченная [[Доверительный интервал| доверительным интервалом]].]] |
+ | |||
+ | '''Критерий:''' <tex>K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right]</tex>, где <tex>\Phi_{\alpha}</tex> - α-[[Квантиль|квантиль]] нормального распределения. | ||
== Литература== | == Литература== |
Версия 18:16, 11 января 2009
|
При использовании модели прогнозирования временного ряда встаёт проблема адекватности этой модели. Пусть , где - данные, которые уже известны, - прогноз на момент t, полученный с помощью некоторой адаптивной модели. Если ошибка невелика, т.е. разница между реальными данными и прогнозом мала, то использование данной модели оправдано.
Определение
- скользящий контрольный сигнал.
Рекуррентная формула вычисления ошибок:
;
;
где , рекомендуется брать
Гипотеза адекватности модели
Гипотеза: : модель адекватна.
При - дисперсия шума. .
Статистика: Скользящий контрольный сигнал - .
Критерий: , где - α-квантиль нормального распределения.
Литература
Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
Ссылки
Модель Брауна - экспоненциальное сглаживание.
Модель Хольта — учитываются линейный тренд без сезонности.
Модель Хольта-Уинтерса — учитываются мультипликативный тренд и сезонность.
Модель Тейла-Вейджа — учитываются аддитивный тренд и сезонность.