Статистическое оценивание

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(переработка)
(переработка-продолжение)
Строка 16: Строка 16:
Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.
Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.
-
===Состоятельность===
+
====Состоятельность====
 +
 
 +
Одно из самых очевидных требований к точечной оценке заключается в том, чтобы можно было ожидать достаточно хорошего приближения к истинному значению параметра при достаточно больших значениях объема выборки <tex>n</tex>. Это означает, что оценка <tex>\widehat\theta_n</tex> должна сходиться к истинному значению <tex>\theta</tex> при <tex>n\to\infty</tex>. Это свойство оценки и называется '''состоятельностью'''. Поскольку речь идет о случайных величинах, для которых имеются разные виды сходимости, то и данное свойство может быть точно сформулировано по-разному:
 +
 
 +
** если <tex>\widehat\theta_n</tex> сходится к истинному значению <tex>\theta</tex> с вероятностью 1 (почти наверное), то тогда оценка называется '''сильно состоятельной''';
 +
** если имеет место [[сходимость по вероятности]] <tex>\widehat{\theta}_n\stackrel{P}{\longrightarrow}\theta</tex>, то тогда оценка называется '''слабо состоятельной'''.
 +
 
 +
Условие состоятельности является практически обязательным для всех используемых на практике оценок. Несостоятельные оценки используются крайне редко.
 +
 
 +
====Несмещенность====
 +
 
 +
 
''...to be continued...''
''...to be continued...''

Версия 15:15, 10 ноября 2009

Содержание

Постановка задачи

Задача статистического оценивания неизвестных параметров - одна из двух основных (наряду с задачей проверки статистических гипотез) задач математической статистики.

Предположим, что имеется параметрическое семейство распределений вероятностей F(t,\theta) (для простоты будем рассматривать распределение случайных величин и случай одного параметра). Здесь \theta\in\mathbb{R} - числовой параметр, значение которого неизвестно. Требуется оценить его по имеющейся выборке X^n=(X_1,\ldots,X_n) значений, порожденной данным распределением.

Различают два основных типа оценок: точечные оценки и доверительные интервалы.

Точечное оценивание

Точечное оценивание - это вид статистического оценивания, при котором значение неизвестного параметра \theta приближается отдельным числом. То есть необходимо указать функцию от выборки (статистику)

\widehat\theta_n=\widehat\theta_n(X^n),

значение которой будет рассматриваться в качестве приближения к неизвестному истинному значению \theta.

Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.

Состоятельность

Одно из самых очевидных требований к точечной оценке заключается в том, чтобы можно было ожидать достаточно хорошего приближения к истинному значению параметра при достаточно больших значениях объема выборки n. Это означает, что оценка \widehat\theta_n должна сходиться к истинному значению \theta при n\to\infty. Это свойство оценки и называется состоятельностью. Поскольку речь идет о случайных величинах, для которых имеются разные виды сходимости, то и данное свойство может быть точно сформулировано по-разному:

    • если \widehat\theta_n сходится к истинному значению \theta с вероятностью 1 (почти наверное), то тогда оценка называется сильно состоятельной;
    • если имеет место сходимость по вероятности \widehat{\theta}_n\stackrel{P}{\longrightarrow}\theta, то тогда оценка называется слабо состоятельной.

Условие состоятельности является практически обязательным для всех используемых на практике оценок. Несостоятельные оценки используются крайне редко.

Несмещенность

...to be continued...



К точечному оцениванию относятся метод моментов, метод минимального расстояния \chi^2, метод максимального правдоподобия, метод наименьших квадратов.

Свойства точечных оценок

(оценка сходится по вероятности к параметру \theta)

\mathsf{D}\hat{\theta}_n=\min\mathsf{D}\hat{\theta}_n', где \hat{\theta}'_n:\; \mathsf{E}\hat{\theta}'_n=\theta


(эффективная оценка обладает минимальной дисперсией среди всех несмещенных оценок)

F(X^n|T=t,\theta)=F(X^n|T=t)

Критерий факторизации

Теорема
Статистика T(X^n) является достаточной тогда и только тогда, когда

F(X^n,\theta)=g(T,\theta)h(X^n)

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

Ссылки

Личные инструменты