Распределение Стьюдента
Материал из MachineLearning.
м |
(→Связь с другими распределениями: Добавлено представление распределения Стьюдента в виде бесконечной смеси Гауссиан) |
||
| Строка 57: | Строка 57: | ||
* Квадрат случайной величины, имеющей распределение Стьюдента, имеет [[распределение Фишера]]. Пусть <tex>t \sim \mathrm{t}(n)</tex>. Тогда | * Квадрат случайной величины, имеющей распределение Стьюдента, имеет [[распределение Фишера]]. Пусть <tex>t \sim \mathrm{t}(n)</tex>. Тогда | ||
: <tex>t^2 \sim \mathrm{F}(0,n)</tex>. | : <tex>t^2 \sim \mathrm{F}(0,n)</tex>. | ||
| + | * Представление распределения Стьюдента в виде бесконечной смеси Гауссиан: | ||
| + | : Пусть <tex>x \sim \mathrm{t}(x | n, \mu, \sigma^2) \propto (1 + \frac{1}{n} \left( \frac{x - \mu}{\sigma} \right)^2 )^{-\frac{n + 1}{2}}</tex>. Тогда: | ||
| + | : <tex>x \sim t(x | n, \mu, \sigma^2) = \int\limits_{-\infty}^{+\infty} \mathrm{N}(x | \mu, \frac{\sigma^2}{\lambda})\mathrm{G}(\lambda | \frac{n}{2}, \frac{n}{2}) \:\textrm{d}\lambda</tex> | ||
== Применение распределения Стьюдента == | == Применение распределения Стьюдента == | ||
Версия 06:59, 14 февраля 2020
Плотность вероятности
| |
Функция распределения
| |
| Параметры | |
| Носитель | |
| Плотность вероятности | |
| Функция распределения | |
| Математическое ожидание | |
| Медиана | |
| Мода | |
| Дисперсия | |
| Коэффициент асимметрии | |
| Коэффициент эксцесса | |
| Информационная энтропия |
|
| Производящая функция моментов | не определена |
| Характеристическая функция | |
Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений.
Содержание |
Определение
Пусть — независимые стандартные нормальные случайные величины, такие что
. Тогда распределение случайной величины
, где
называется распределением Стьюдента с степенями свободы. Пишут
. Её распределение абсолютно непрерывно и имеет плотность
-
,
где — гамма-функция Эйлера.
Свойства распределения Стьюдента
- Распределение Стьюдента симметрично. В частности если
, то
-
.
Моменты
Случайная величина имеет только моменты порядков
, причём
-
, если
нечётно;
-
, если
чётно.
В частности,
-
,
-
, если
.
Моменты порядков не определены.
Связь с другими распределениями
- Распределение Коши является частным случаем распределения Стьюдента:
-
.
- Распределение Стьюдента сходится к стандартному нормальному при
. Пусть дана последовательность случайных величин
, где
. Тогда
-
по распределению при
.
- Квадрат случайной величины, имеющей распределение Стьюдента, имеет распределение Фишера. Пусть
. Тогда
-
.
- Представление распределения Стьюдента в виде бесконечной смеси Гауссиан:
- Пусть
. Тогда:
-
Применение распределения Стьюдента
Распределение Стьюдента используется в статистике для точечного оценивания, построения доверительных интервалов и тестирования гипотез, касающихся неизвестного среднего статистической выборки из нормального распределения. В частности, пусть независимые случайные величины, такие что
. Обозначим
выборочное среднее этой выборки, а
выборочную оценку её дисперсии. Тогда
-
.
| | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |



