Глубинное обучение (курс лекций)/2020
Материал из MachineLearning.
(Различия между версиями)
| Строка 42: | Строка 42: | ||
|- | |- | ||
| Convolutional neural networks, basic architectures. || [https://drive.google.com/file/d/1uSVdPsn5wznk510gS9N1K9DXITpxNFXt/view?usp=sharing Presentation] | | Convolutional neural networks, basic architectures. || [https://drive.google.com/file/d/1uSVdPsn5wznk510gS9N1K9DXITpxNFXt/view?usp=sharing Presentation] | ||
| + | |- | ||
| + | | 25 Sep. 2020 || 3 || Pytorch and implementation of convolutional neural networks. || [https://github.com/nadiinchi/dl_labs/blob/master/lab_cnn_english.ipynb ipynb 1]<br> [https://github.com/nadiinchi/dl_labs/blob/master/loss_surfaces_lab/lab_loss_surfaces.ipynb ipynb 2]<br> | ||
| + | [https://github.com/nadiinchi/dl_labs/blob/master/lab_pytorch.ipynb ipynb 3] | ||
|- | |- | ||
|} | |} | ||
Версия 11:49, 29 сентября 2020
This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis.
Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.
The timetable in Autumn 2020: Fridays, lectures begin at 10-30, seminars begin at 12-15, zoom-link
Lectures and seminars video recordings: link
Anytask invite code: ldQ0L2R
Course chat in Telegram: link
Rules and grades
TBA
Lectures and seminars
| Date | No. | Topic | Materials |
|---|---|---|---|
| 11 Sep. 2020 | 1 | Introduction. Fully-connected networks. | |
| Matrix calculus, automatic differentiation. | Synopsis | ||
| 18 Sep. 2020 | 2 | Stochastic optimization for neural networks, drop out, batch normalization. | |
| Convolutional neural networks, basic architectures. | Presentation | ||
| 25 Sep. 2020 | 3 | Pytorch and implementation of convolutional neural networks. | ipynb 1 ipynb 2 |

