Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
м   | 
				м   | 
			||
| Строка 22: | Строка 22: | ||
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.  | Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.  | ||
=== Метод Belsley, Kuh, и Welsch (BKW) ===  | === Метод Belsley, Kuh, и Welsch (BKW) ===  | ||
| - | Диагностика Коллинеарности BKW основана на двух элементах, относящихся к <tex> n \times p</tex> матрице данных <tex>X </tex> использующейся в линейной регрессии <tex> y = X \beta + \epsilon</tex> : the scaled condition indexes и the  variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы <tex>X</tex>: <tex> X=UD{V^{T}}</tex>  | + | Диагностика Коллинеарности BKW основана на двух элементах, относящихся к <tex> n \times p</tex> матрице данных <tex>X </tex> использующейся в линейной регрессии <tex> y = X \beta + \epsilon</tex> : the scaled condition indexes и the  variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы <tex>X</tex>: <tex> X=UD{V^{T}}</tex>, где <tex>{U}^{T}U={V}^{T}V={I}_{p}</tex> и <tex>D</tex> - диогональная с неотрицательными элементами <tex>{\mu}_{1},...,{\mu}_{p}</tex> называющимися сингулярными значениями <tex>X</tex>  | 
== Вычислительный эксперимент ==  | == Вычислительный эксперимент ==  | ||
== Исходный код ==  | == Исходный код ==  | ||
Версия 18:44, 8 мая 2010
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание | 
Постановка задачи
Задана выборка  откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию 
.
Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров модели от дисперсии случайной переменной и выбросов в выборке.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
Дисперсия :
 
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где  — коэффициент детерминации j-го признака относительно остальных:
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение  велико, то 
 — мало, то есть 
 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Метод Belsley, Kuh, и Welsch (BKW)
Диагностика Коллинеарности BKW основана на двух элементах, относящихся к  матрице данных 
 использующейся в линейной регрессии 
 : the scaled condition indexes и the  variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы 
: 
, где 
 и 
 - диогональная с неотрицательными элементами 
 называющимися сингулярными значениями 
Вычислительный эксперимент
Исходный код
Смотри также
Литература
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

