Метод Белсли
Материал из MachineLearning.
м  (→Анализ коллинеарности)  | 
				м  (→Анализ коллинеарности)  | 
			||
| Строка 2: | Строка 2: | ||
==Анализ коллинеарности==  | ==Анализ коллинеарности==  | ||
Линейная регрессионная модель: <br />  | Линейная регрессионная модель: <br />  | ||
| - | <tex>y=X \beta + \varepsilon</tex><br />   | + | <tex>y=X \beta + \varepsilon.</tex>       (1)<br />   | 
где <tex>y</tex> - n-мерный ветор ответа(зависимой переменной), <tex>X</tex> - n x p (n>p) матрица признаков <tex>\beta</tex> - p-мерный вектор неизвестных коэффициентов, <tex>\varepsilon</tex> - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей <tex>{\sigma}^2 I</tex>, где <tex>I</tex> это n x n единичная матрица, а <tex>{\sigma}^2>0</tex>. Будем считать что <tex>X</tex> имеет ранг p.  | где <tex>y</tex> - n-мерный ветор ответа(зависимой переменной), <tex>X</tex> - n x p (n>p) матрица признаков <tex>\beta</tex> - p-мерный вектор неизвестных коэффициентов, <tex>\varepsilon</tex> - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей <tex>{\sigma}^2 I</tex>, где <tex>I</tex> это n x n единичная матрица, а <tex>{\sigma}^2>0</tex>. Будем считать что <tex>X</tex> имеет ранг p.  | ||
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения <tex>X</tex> определяется как: <br/>  | Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения <tex>X</tex> определяется как: <br/>  | ||
| - | <tex>X=UDV^T</tex><br/>  | + | <tex>X=UDV^T.</tex>      (2)<br/>  | 
Где <tex>U</tex> - n x p ортогональная матрица, <tex>D</tex> - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями <tex>X</tex>, <tex>V</tex> - p x p ортогональная матрица, чьи колонки это собственные вектора <tex>X^T X</tex>. Если существует коллинеарная зависимоть, то  | Где <tex>U</tex> - n x p ортогональная матрица, <tex>D</tex> - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями <tex>X</tex>, <tex>V</tex> - p x p ортогональная матрица, чьи колонки это собственные вектора <tex>X^T X</tex>. Если существует коллинеарная зависимоть, то  | ||
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.  | будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.  | ||
| Строка 12: | Строка 12: | ||
И рассмотрим разбиение<br/>  | И рассмотрим разбиение<br/>  | ||
<tex>  | <tex>  | ||
| - | D=\begin{  | + | D=\begin{pmatrix} D_{s\times s} & O_{s \times (p-s)} \\ O_{(p-s) \times s} & D_{(p-s)\times (p-s)} \end{pmatrix},  | 
</tex>  | </tex>  | ||
где <tex>D_{s\times s}</tex> и <tex>D_{(p-s)\times (p-s)}</tex> диогональные, и недиогональнык блоки нулевые. <tex>D_{s\times s}</tex>, или просто <tex>D_{S}</tex>, содержит достаточно большие сингулярные значения, а <tex>D_{(p-s)\times (p-s)}</tex>, или <tex>D_{N}</tex>, содержит близкие к нулю.   | где <tex>D_{s\times s}</tex> и <tex>D_{(p-s)\times (p-s)}</tex> диогональные, и недиогональнык блоки нулевые. <tex>D_{s\times s}</tex>, или просто <tex>D_{S}</tex>, содержит достаточно большие сингулярные значения, а <tex>D_{(p-s)\times (p-s)}</tex>, или <tex>D_{N}</tex>, содержит близкие к нулю.   | ||
Версия 17:29, 28 июня 2010
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание | 
Анализ коллинеарности
Линейная регрессионная модель: 
       (1)
 
где  - n-мерный ветор ответа(зависимой переменной), 
 - n x p (n>p) матрица признаков 
 - p-мерный вектор неизвестных коэффициентов, 
 - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей 
, где 
 это n x n единичная матрица, а 
. Будем считать что 
 имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения 
 определяется как: 
      (2)
Где  - n x p ортогональная матрица, 
 - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями 
, 
 - p x p ортогональная матрица, чьи колонки это собственные вектора 
. Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.
Предположим, что 
, или просто 
, элементы матрицы 
 упорядочены так, что 
И рассмотрим разбиение
где 
 и 
 диогональные, и недиогональнык блоки нулевые. 
, или просто 
, содержит достаточно большие сингулярные значения, а 
, или 
, содержит близкие к нулю. 
Теперь разделим 
 и 
 соответственно: 
 
где  и 
 соответствуют первым s наибольших сингулярных значений, а 
 и 
 содержат 
 веторов соответствующих малым сингулярным значениям.
Матрица 
  ортогональна, т.е 
, так же как и 
 и 
. Таким образом : 
  
 
 
 
 
 
Т.к V тоже ортогональна, то 
 
 
 
 
 
 
Таким образом разложение нам дает: 
Обозначим слагаемые в правой части как 
Заметим что получившиеся матрицы ортогональны, т.е :
 
что обеспечивает возможность ортогонального разложения  :
Здесь все матрицы имеют размер  и полагая что 
 имеет ранг p, 
 и 
 имеють ранг s и (p-s) соответственно.

