Метод Белсли
Материал из MachineLearning.
м  (→Разложение линейной модели)  | 
				|||
| Строка 20: | Строка 20: | ||
</tex><br/>  | </tex><br/>  | ||
<tex>  | <tex>  | ||
| - | V=(  | + | V=(V_{p\times s}  V_{p \times (p-s)}) = (V_{S} V_{N}),  | 
</tex> (4) <br/>  | </tex> (4) <br/>  | ||
где <tex>U_{S}</tex> и <tex>V_{S}</tex> соответствуют первым s наибольших сингулярных значений, а <tex>U_{N}</tex> и <tex>V_{N}</tex> содержат <tex>(p-s)</tex> веторов соответствующих малым сингулярным значениям.  | где <tex>U_{S}</tex> и <tex>V_{S}</tex> соответствуют первым s наибольших сингулярных значений, а <tex>U_{N}</tex> и <tex>V_{N}</tex> содержат <tex>(p-s)</tex> веторов соответствующих малым сингулярным значениям.  | ||
Версия 06:31, 27 августа 2010
Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание | 
Разложение линейной модели
Линейная регрессионная модель: 
       (1)
 
где  - 
-мерный ветор ответа(зависимой переменной), 
 - 
 
 матрица признаков 
 - 
-мерный вектор неизвестных коэффициентов, 
 - 
-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей 
, где 
 это 
 единичная матрица, а 
. Будем считать что 
 имеет ранг 
.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения 
 определяется как: 
      (2)
Где  - 
 ортогональная матрица, 
 - 
 верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями 
, 
 - 
 ортогональная матрица, чьи колонки это собственные вектора 
. Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, 
, которые близки к нулю.
Предположим, что 
, или просто 
, элементы матрицы 
 упорядочены так, что 
И рассмотрим разбиение
 (3)
где 
 и 
 диогональные, и недиогональнык блоки нулевые. 
, или просто 
, содержит достаточно большие сингулярные значения, а 
, или 
, содержит близкие к нулю. 
Теперь разделим 
 и 
 соответственно: 
 (4) 
где  и 
 соответствуют первым s наибольших сингулярных значений, а 
 и 
 содержат 
 веторов соответствующих малым сингулярным значениям.
Матрица 
  ортогональна, т.е 
, так же как и 
 и 
. Таким образом : 
  
 
 
 
 
 (5)
Т.к  тоже ортогональна, то 
 
 
 
 
 
 (6)
Таким образом разложение нам дает: 
 (7)
Обозначим слагаемые в правой части как 
 (8)
Заметим что получившиеся матрицы ортогональны, т.е :
(9) 
что обеспечивает возможность ортогонального разложения  :
 (10)
Здесь все матрицы имеют размер  и полагая что 
 имеет ранг 
, 
 и 
 имеють ранг 
 и 
 соответственно. Тогда для разложения (2) :
 (11)
Далее мы получаем 
 (12)
и 
 (13)
Равенства в (12) и (13) получаются из (8) и (10) ссылаясь на то что из ортогональности  следует 
. Это значит что 
 содержит всю информацию, и только ее, входящую в 
 которая свободна от коллинеарности связанной с остальными 
собственными векторами.
Соответственно  содержит только информацию связанную с коллинеарностью делая прогноз на дополнительное пространство 
. Это пространство связанное с элементами матрицы 
 близкими к нулю называется квази-нулевым пространством
Следовательно предложенное разложение подчеркивает  как часть 
 полученную из s основных компонентов которые в меньшей степени участвуют в коллинеарности. 
 же содержит информацию связанную с 
 компонентами которые участвую в коллинеарных зависимостях. Переменные, входящие в коллинеарности, это те, которые имеют наибольшие координаты в столбцах матрицы 
.
Вектор 
 минимизирующего ошибку в метода наименьших квадратов:
 (14)
где  - псевдообратная матрица 
 и последнее равенство выполняется только если 
 имеет полный ранг. Используя предыдущее разложение может быть показано что:
(15)
Последнее равенство получается из того что 
 - сингулярное разложение 
 и следовательно 
. Для 
 аналогично.
Подставляя (15) и (7) в (14) получаем: 
(16)
Окончательно модель:
(17)
Где  это вектор остатков.
Из (15) получаем:
(18)
Элементы на главной диогонали  это VIF, которые могут быть разложены на компоненты соответствующие каждому 
 и 
Выявление мультиколлинеарности
Когда есть мультиколлинеарность одино или более собственных значений близко к нулю, и соответствующие им собственные вектора содержат информацию о зависимостях между признаками. Выведеное разложение помогает выявить какие переменные показывают наибольшую вовлеченность в зависимости.
Из (16) получаем:
(19)
где  и 
. Значения 
 и 
 зависят от элементов 
 и 
, и от соотношений 
 которые играют основную роль в объяснении соотношений между признаками. 
 всегда больше нуля(мы считаем что ранг 
 равен p), тогда как 
 принимает значения от -1 до 1. Отрицательные значения 
 могут вести к 
 и 
 разных знаков, и один из них может иметь абсолютное значение больше 
. Что касается собственных векторов соответствующих очень малым значениям собственных значений, то известно, что 
 с большими абсолютными значениями озночают что соответствующие переменные сильно вовлечены в мультиколлинеарность. Если несколько собственных значений близки к нулю, то мы можем увеличить порядок (p-s) 
 по шагам используя разложение (7) и обычно мы будем наблюдать уменьшение абсолютных значений 
 и увеличение 
. Когда (p-s) соответствует числу индексов обусловленности показывающих существование зависимостей 
 может рассматриваться как общие значения параметров метода наименьших квадратов. Это актуально, когда знак какого-либо параметра не является таким как ожидалось, и в целом это зависит от мультиколлинеарности.С помощью разложения, как уже отмечалось, мы можем получить что 
 будет иметь нужный знак, в то время как часть значения перешедшего 
 (благодаря коллинеарности) будет иметь противоположный знак и большее абсолютное значение.
Чтобы исследовать влияние коллинеарности на параметры линейной регрессии лучше, ковариационная матрица может быть переписана:
 (20) 
и
 (21) 
Отклонение каждого  может быть выражено как
 (22)
Из (18) мы можем разделить отклонение:
(23)
Так как сингулярные значения  близки к нулю,то если соответствующие 
 не очень малы, второй член будет больше первого, т.к отклонение 
 будет больше чем 
.Тогда по мере увеличения размерности квази-нуль пространства, мы можем ожидать, что переменные, которые более активно участвовуют в коллинеарных отношениях, связанных с собственными векторами принадлежащими этому пространству должны будут уменьшать значения 
 и увеличивать 
.

