Аппроксимация Лапласа (пример)
Материал из MachineLearning.
 (→Вычислительный эксперимент)  | 
				 (→Постановка задачи)  | 
			||
| Строка 17: | Строка 17: | ||
Задана выборка — множество <tex>X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\}</tex> значений свободных переменных и множество <tex>\{y_1,\ldots, y_N| y\in\R\}</tex> соответствующих им значений зависимой переменной.  | Задана выборка — множество <tex>X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\}</tex> значений свободных переменных и множество <tex>\{y_1,\ldots, y_N| y\in\R\}</tex> соответствующих им значений зависимой переменной.  | ||
| - | Необходимо для выбранной регрессионной модели <tex>f(\mathbf{w},\mathbf{x})</tex>  | + | Необходимо для выбранной регрессионной модели <tex>f(\mathbf{w},\mathbf{x})</tex>:  | 
# показать зависимость среднеквадратичной ошибки от значений параметров модели: <tex>SSE=SSE(w)</tex>;  | # показать зависимость среднеквадратичной ошибки от значений параметров модели: <tex>SSE=SSE(w)</tex>;  | ||
# построить график и сделать апроксимацию Лапласа для нее;  | # построить график и сделать апроксимацию Лапласа для нее;  | ||
Версия 02:36, 23 ноября 2010
Аппроксимация Лапласа - способ оценки параметров нахождения нормального распределения при апроксимации заданой плотности вероятности.
Содержание | 
Сэмплирование
Сэмплирование – метод выбора подмножества наблюдаемых величин из данного множества, с целью выделения неких свойст исходного множества. Одно из основных приминений методов сэмплирования заключается в оценке математического ожидания сложных вероятностных распределений:
для которых данный инеграл не может быть подсчитан аналитическим методом (к примеру, ввиду сложного аналитического вида распределения ). Однако, можно подсчитать значение p(z) в любой точке z. Основная идея заключается в создании незавсимой выборки 
 (где 
) из распределения 
. Это позволит оцениваемое математическое ожидание приблизить конечной суммой:
Существует несколько методов сэмплирования для создания выборки  [1]:
- Simple random sampling;
 - Systematic sampling;
 - Rejection sampling;
 - Adaptive rejection sampling.
 
Постановка задачи
Задана выборка — множество  значений свободных переменных и множество 
 соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели 
:
-  показать зависимость среднеквадратичной ошибки от значений параметров модели: 
;
 - построить график и сделать апроксимацию Лапласа для нее;
 - найти расстояния между получеными зависимостями, используя расстояние Кульбака - Лейблера.
 
Описание алгоритма
Расстояние Кульбака - Лейблера:
Вычислительный эксперимент
Обозначим плоность распределения SSE как , а его апроксимация лапласса 
.
При востановлении регрессии рассматривалась следующая гипотеза порождения данных:
В таком случае, при фиксированной модели f плотность вероятности появления данных равняется:
 - это функция регрессионных невязок;
 - нормировачный коэффициент.
Однако, во время вычислительного эксперимента SSE принимало достаточно большие значения (порядка ). Как следствие, p(y|x,w) принимало значения порядка 1, и апроксимация Лапласса была некоректной. Поэтому, апроксимация Лапласса применялась не к самому распределению p(y|x,w), а к ln(p(y|x,w)) (т.е. к -SSE c точностью до коэффициента).
Пример 1
Задуманная функция . Берем линейную регрессионную модель с двумя параметрами: 
.
Используя метод наименьших квадратов находим оптимальное значение 
 и 
 (при которых SSE минимально).
При фиксированном  задаем различные значение 
 (500 случайных значений на отрезке [-1;2]) и строим зависимость:
.
Повторим эксперимент, только теперь варируем сразу оба параметра  и 
:
апроксимация Лапласса:
На рис.2 наблюдается зависимость между коэффициентами  и 
. Следовательно, ковариационная матрица 
 не будет диагональной.
Смотри также
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
 
Примечания
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 





