Аппроксимация Лапласа (пример)
Материал из MachineLearning.
 (→Описание алгоритма)  | 
				 (→Вычислительный эксперимент)  | 
			||
| Строка 57: | Строка 57: | ||
==Вычислительный эксперимент==  | ==Вычислительный эксперимент==  | ||
| - | Обозначим   | + | Обозначим плотность распределения SSE как <tex> p_{SSE}</tex>, а его апроксимация лапласса <tex> p_{lap}</tex>.  | 
| - | Во время вычислительного эксперимента ''SSE'' принимало достаточно большие значения (порядка <tex>10^3 - 10^4</tex>). Как следствие, ''p(y  | + | {{tip | Во время вычислительного эксперимента ''SSE'' принимало достаточно большие значения (порядка <tex>10^3 - 10^4</tex>). Как следствие, ''p(y)'' принимало значения порядка 1, и апроксимация Лапласса была некоректной.  | 
| + | Поэтому, апроксимация Лапласса применялась не к самому распределению ''p(y)'', а к ''ln(p(y))'' (т.е. к ''-SSE'' c точностью до коэффициента).}}  | ||
Версия 16:11, 7 декабря 2010
Аппроксимация Лапласа - способ оценки параметров нормального распределения при апроксимации заданой плотности вероятности.
Содержание | 
Постановка задачи
Задана выборка — множество  значений свободных переменных и множество 
 соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели 
:
3-1 показать зависимость среднеквадратичной ошибки от значений параметров модели: ;
3-2 построить график и сделать апроксимацию Лапласа для нее;
3-3 найти расстояния между получеными зависимостями, используя расстояние Кульбака - Лейблера.
Описание алгоритма
При востановлении регрессии рассматривалась следующая гипотеза порождения данных:
В таком случае, при фиксированной модели f плотность вероятности появления данных равняется[1]:
 - это функция регрессионных невязок, т.е. 
;
 - нормировачный коэффициент.
3-1. В заданной модели f, используя метод наименьших квадратов, находим оптимальное значение вектора параметров . Далее, фиксируем  все параметры выбранной регрессионной модели (для определенности зададим им оптимальные значения) кроме одного (пусть этот незафиксированный параметр будет w(1)). После чего, варируя значение w(1), строим искомую зависимость 
 и его график. Таким образом построена зависимость от одного параметра w(1). Аналогично действуя, строится зависимость от большего количества параметров.
3-2. При построении апроксимации Лапласса вначале рассмотрим одномерный случай. Пусть есть распределение p(z):
 - нормировочный коэффициент.
Первый шаг при построении апроксимации Лапласса, нахождение максимума, т.е. такого , что 
. Далее, раскладываем 
 в ряд Тейлора в окресности  
:
где
Тогда
Апроксимация Лапласса примет вид:
В многомерном случае (размерности M), аналогично действуя, придем к:
где A Гаусиан, размера M x M, равный:
3-3. Расстояние Кульбака - Лейблера между двумя распределениями p(z) и q(z) равняется:
Вычислительный эксперимент
Обозначим плотность распределения SSE как , а его апроксимация лапласса 
.
Пример 1
Задуманная функция . Рассматривается линейная регрессионная модель с двумя параметрами: 
.
 и 
 - оптимальное значение параметров (при которых SSE минимально).
Фиксируем один параметр  и задаем различные значение 
 (500 случайных значений на отрезке [-1;2]). Строим зависимость:
.
Повторим эксперимент, только теперь варируем сразу оба параметра  и 
:
апроксимация Лапласса:
На рис.2 наблюдается зависимость между коэффициентами  и 
. Следовательно, ковариационная матрица 
 не будет диагональной.
Смотри также
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
 
Примечания
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 





