Наивный байесовский классификатор
Материал из MachineLearning.
| Строка 1: | Строка 1: | ||
| - | {{Main|  | + | {{Main|Байесовский классификатор}}  | 
'''Наивный байесовский классификатор''' (naїve Bayes) — специальный частный случай [[байесовский классификатор|байесовского классификатора]], основанный на дополнительном предположении, что   | '''Наивный байесовский классификатор''' (naїve Bayes) — специальный частный случай [[байесовский классификатор|байесовского классификатора]], основанный на дополнительном предположении, что   | ||
объекты описываются <tex>n</tex> независимыми признаками:  | объекты описываются <tex>n</tex> независимыми признаками:  | ||
| Строка 39: | Строка 39: | ||
== Ссылки ==  | == Ссылки ==  | ||
| - | * [[  | + | * [[Машинное обучение (курс лекций, К.В.Воронцов)]]  | 
[[Категория:Байесовская теория классификации]]  | [[Категория:Байесовская теория классификации]]  | ||
Версия 13:45, 30 апреля 2008
Наивный байесовский классификатор (naїve Bayes) — специальный частный случай байесовского классификатора, основанный на дополнительном предположении, что 
объекты описываются  независимыми признаками:
.
В этом случае функции правдоподобия классов представимы в виде
,
где 
 — плотность распределения значений 
-го признака для класса 
.
Предположение о независимости существенно упрощает задачу,
так как оценить  одномерных плотностей гораздо легче, чем
одну 
-мерную плотность.
К сожалению, оно крайне редко выполняется на практике, отсюда и название метода.
Наивный байесовский классификатор может быть как параметрическим, так и непараметрическим, в зависимости от того, каким методом Восстановление распределения вероятностейвосстанавливаются одномерные плотности.
Основные преимущества наивного байесовского классификатора — простота реализации и низкие вычислительные затраты при обучении и классификации. В тех редких случаях, когда признаки действительно независимы (или почти независимы), наивный байесовский классификатор (почти) оптимален.
Основной его недостаток — относительно низкое качество классификации в большинстве реальных задач.
Чаще всего он используется либо как примитивный эталон для сравнения различных моделей алгоритмов, либо как элементарный строительный блок в алгоритмических композициях.
Литература
- Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
 - Вапник В. Н., Червоненкис А. Я. Теория распознавания образов. — М.: Наука, 1974.
 - Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
 - Дуда Р., Харт П. Распознавание образов и анализ сцен. — М.: Мир, 1976.
 - Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. — Springer, 2001. ISBN 0-387-95284-5.
 

