Статистический отчет при создании моделей

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Вычислительный эксперимент)
(Вычислительный эксперимент)
Строка 65: Строка 65:
В данном отчете представлены результаты применения созданного инструмента для анализа модели.
В данном отчете представлены результаты применения созданного инструмента для анализа модели.
Отчет состоит из трех экспериментов, демонстрирующих работу инструмента на различных по качеству моделях.
Отчет состоит из трех экспериментов, демонстрирующих работу инструмента на различных по качеству моделях.
-
 
-
Вставляйте сюда неотформатированный текст.
 
=== Модель №1 ===
=== Модель №1 ===

Версия 21:34, 14 ноября 2011

Содержание

В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.

Постановка задачи

Имеется пространство объектов-строк \mathbb{X} = \mathbb{R}^n и пространство ответов \mathbb{Y} = \mathbb{R}. Задана выборка (x_i,\ y_i)_{i=1}^l \in \mathbb{X} \times \mathbb{Y}. Обозначеним:

  •  X = \(x_1 <br> \ \vdots\ <br> x_l\)  — матрица информации или матрица плана;
  •  w = \(w_1<br> \ \vdots <br> w_n\)  — вектор параметров;
  •  y = \(y_1<br>\ \vdots<br>y_l\)  — целевой вектор.

Будем считать, что зависимость имеет вид

y(x) = f(x) + \varepsilon(x),

где f(x)  — некоторая неслучайная функция, \varepsilon(x)  — случайная величина, с нулевым математически ожиданием. В моделях многомерной линейной регрессии предполагается, что неслучайная составляющая имеет вид:

 f(x) = <w, \ x> .

Требуется численно оценить качество модели при заданном векторе параметров  w.

Описание решения

Предполагая, что матрица ковариации вектора ошибки \varepsilon = \(\varepsilon_1 <br> \ \vdots\ <br> \varepsilon_l\) имеет вид \sigma^2 V , где  V = diag (v_1, \dots, v_l) , получаем выражение для оценки параметров w взвешенным методом наименьших квадратов:

 \hat w = (X^T V^{-1} X)^{-1} X^T V^{-1} y. Основными инструментами оценки качества линейной модели является анализ:

В работе рассматривается

  • анализ регрессионных остатков, включающий в себя:
    • вычисление среднеквадратичной ошибки:

\mathbb{MSE} = \sum_{i=1}^l \left(y_i - f\left(x_i\right)\right)^2;

    • вычисление коэффициента детерминации:

\mathbb{R}^2 = 1 - \frac{\sum_{i=1}^l \left(y_i - f\left(x_i\right)\right)^2}{\sum_{i=1}^l \left(y_i - \bar y\right)^2}, где \bar y = \frac{1}{l} \sum_{i=1}^l y_i;

    • проверку гипотезы о равенстве нулю математического ожидания регрессионных остатков на основе критерия знаков;
    • проверку гипотезы о равенстве дисперсий (пропорциональности с заданными коэффициентами) регрессионных остатков на основе критерия Ансари-Брэдли;
    • проверку гипотезы о нормальности распределения регрессионных остатков на основе критерия хи-квадрат и критерия Жарка-Бера;
  • вычисление расстояния Махаланобиса и Кука;
  • вычисление корреляций признаков, корреляций признаков и значений моделируемой функции и коэффициента множественной регрессии.

Вычислительный эксперимент

В данном отчете представлены результаты применения созданного инструмента для анализа модели. Отчет состоит из трех экспериментов, демонстрирующих работу инструмента на различных по качеству моделях.

Модель №1

Неизвестная зависимость:  y(x) = x - 10 \sin(x) + \exp(x / 100).

Для построения модели использовалось 100 объектов независимо равномерно распределительных на отрезке [0, 100]. В качестве шума использовались независимые случайные величины из распределения N(0, \; 0,1). В качестве признаков использовались x, \; \sin(x), \;\exp(x / 100). Параметры модели подбирались с помощью метода наименьших квадратов.

image:statModelAnalisys1.png

Отчет, построенный программой:

отчет №1.

Модель №2

Неизвестная зависимость:  y(x) = x - 10 \sin(x) + \exp(x / 100).

Для построения модели использовалось 100 объектов независимо равномерно распределительных на отрезке [0, 100]. В качестве шума использовались независимые случайные величины из распределения N(0, \; 0,1). В качестве признаков использовались x, \;\exp(x / 100). Параметры модели подбирались с помощью метода наименьших квадратов.

image:statModelAnalisys2.png

Отчет, построенный программой:

отчет №2.

Модель №3

Неизвестная зависимость:  y(x) = x - 10 \sin(x) + \exp(x / 100).

Для построения модели использовалось 100 объектов независимо равномерно распределительных на отрезке [0, 100]. В качестве шума использовались независимые случайные величины из распределения N(0, \; x). В качестве признаков использовались  y(x) = x - 10 \sin(x) + \exp(x / 100). Параметры модели подбирались с помощью метода наименьших квадратов.

image:statModelAnalisys3.png

Отчет, построенный программой:

отчет №3.

Исходный код и полный текст работы

Функция, строящая отчет, и примеры.

Смотри также

Литература

  1. Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
  2. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
  3. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.


Данная статья является непроверенным учебным заданием.
Студент: Юрий Янович
Преподаватель: В.В. Стрижов
Срок: 28 мая 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Личные инструменты