Коэффициент корреляции Пирсона
Материал из MachineLearning.
м (→Определение) |
м (→Статистическая проверка наличия корреляции) |
||
Строка 19: | Строка 19: | ||
'''Статистика критерия: ''' | '''Статистика критерия: ''' | ||
- | <tex> T = \frac{r_{xy}\sqrt{n-2}}{sqrt{1-r^2_{xy}}} \sim t_{n-2} </tex> – [[распределение Стьюдента]] с <tex>n-2</tex> степенями свободы. | + | ::<tex> T = \frac{r_{xy}\sqrt{n-2}}{sqrt{1-r^2_{xy}}} \sim t_{n-2} </tex> – [[распределение Стьюдента]] с <tex>n-2</tex> степенями свободы. |
'''Критерий:''' | '''Критерий:''' |
Версия 14:39, 11 января 2012
|
Определение
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Пусть даны две выборки коэффициент корреляции Пирсона рассчитывается по формуле:
где – выборочные средние и , – выборочные дисперсии, .
Коэффициент корреляции Пирсона называют также теснотой линейной связи:
- линейно зависимы,
- линейно независимы.
Статистическая проверка наличия корреляции
Гипотеза: : отсутствует линейная связь между выборками x и y ().
Статистика критерия:
- – распределение Стьюдента с степенями свободы.
Критерий:
, где есть α-квантиль распределения Стьюдента.
Слабые стороны
- Неустойчивость к выбросам.
- С помощью коэффициента корреляции Пирсона можно определить силу линейной зависимости между величинами, другие виды взаимосвязей выявляются методами регрессионного анализа.
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот.
Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z:
Для исключения влияния большего числа переменных:
, где – главный минор матрицы коэффициентов корреляции переменных