Участник:Ruzik/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 33: Строка 33:
* Вектор весов <tex>w</tex>
* Вектор весов <tex>w</tex>
-
#Инициализировать веса <tex>w_j \; j = 0, \dots, n;</tex>
+
#Инициализировать веса <tex>w_j \; j = 0, \dots, n</tex>;
 +
#Инициализировать текущую оценку функционала:
 +
:: <tex>Q \, {:=} \, \sum_{i=1}^l L(a(x_i, w)</tex>;

Версия 12:04, 3 января 2010

y^*: \: X \to Y
X^l \, = \, (x_i,y_i)_{i=1}^l, \; y_i \, = \, y^*(x_i)
Q(w) \, = \, \sum_{i=1}^l L(a(x_i, w), \, y_i) \to \min_w
w \, {:=} \, w \, - \, \eta \nabla Q(w)
w \, {:=} \, w \, - \, \eta \sum_{i=1}^l L_a^\prime (a(x_i, w), \, y_i) \varphi^\prime (<w, x_i>)x_i
w_j \, {:=} \, \frac{<y, f_i>}{<f_i, f_j>}
x^j \, {:=} \, \frac{x^j \, - \, x_{\min}^j}{x_{\max}^j \, - \, x_{\min}^j}

Метод стохастического градиента (Stochastic Gradient)

Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении. Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов w в линейном классификаторе (ссылка). Пусть y^*: \: X \to Y - целевая зависимость, известная только на объектах обучающей выборки: X^l \, = \, (x_i,y_i)_{i=1}^l, \; y_i \, = \, y^*(x_i).

Найдём алгоритм a(x, w), аппроксимирующий зависимость y^*. Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу: Q(w) \, = \, \sum_{i=1}^l L(a(x_i, w), \, y_i) \to \min_w, где L(a,y) - заданная функция потерь.

Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента):

w \, {:=} \, w \, - \, \eta \nabla Q(w),

где \eta - положительный параметр, называемый темпом обучения (learning rate).

Возможно 2 основных подхода к реализации градиентного спуска:

  • Пакетный (batch), когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется w. Это требует больших вычислительных затрат.
  • Стохастический (stochastic/online), когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.

Алгоритм Stochastic Gradient (SG)

Вход:

  • X^l - обучающая выборка
  • \eta - темп обучения
  • \lambda - параметр сглаживания функционала Q

Выход:

  • Вектор весов w
  1. Инициализировать веса w_j \; j = 0, \dots, n;
  2. Инициализировать текущую оценку функционала:
Q \, {:=} \, \sum_{i=1}^l L(a(x_i, w);
Личные инструменты