Участник:Ruzik/Песочница
Материал из MachineLearning.
Строка 42: | Строка 42: | ||
## Сделать шаг градиентного спуска: | ## Сделать шаг градиентного спуска: | ||
##:: <tex>w \, {:=} \, w \, - \, \eta L_a^\prime (a(x_i, w), \, y_i) \varphi^\prime (<w, x_i>)x_i</tex>; | ##:: <tex>w \, {:=} \, w \, - \, \eta L_a^\prime (a(x_i, w), \, y_i) \varphi^\prime (<w, x_i>)x_i</tex>; | ||
- | ## | + | ## Оценить значение функционала: |
+ | ##:: <tex>Q /, {:=} /, (1 /, - /, \lambda)Q \, + \, \lambda\varepsilon_i</tex>; | ||
#Пока | #Пока |
Версия 12:43, 3 января 2010
Метод стохастического градиента (Stochastic Gradient)
Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении. Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов в линейном классификаторе (ссылка). Пусть - целевая зависимость, известная только на объектах обучающей выборки: .
Найдём алгоритм , аппроксимирующий зависимость . Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу: , где - заданная функция потерь.
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор изменяется в направлении наибольшего убывания функционала (то есть в направлении антиградиента):
- ,
где - положительный параметр, называемый темпом обучения (learning rate).
Возможно 2 основных подхода к реализации градиентного спуска:
- Пакетный (batch), когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется . Это требует больших вычислительных затрат.
- Стохастический (stochastic/online), когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.
Алгоритм Stochastic Gradient (SG)
Вход:
- - обучающая выборка
- - темп обучения
- - параметр сглаживания функционала
Выход:
- Вектор весов
Тело:
- Инициализировать веса ;
- Инициализировать текущую оценку функционала:
- ;
- Повторять
- Выбрать объект из (например, случайным образом);
- Вычислить выходное значение алгоритма и ошибку:
- ;
- Сделать шаг градиентного спуска:
- ;
- Оценить значение функционала:
- ;
- Пока