Участник:Ruzik/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 57: Строка 57:
* <tex>w_j {:=} rand(-\frac{1}{n}, \frac{1}{n})</tex>, где <tex>n</tex> - размерность пространства признаков. Этот подход существенно более удачен, чем предыдущий, если соответствующим образом нормализовать признаковое описание (см. ниже.)
* <tex>w_j {:=} rand(-\frac{1}{n}, \frac{1}{n})</tex>, где <tex>n</tex> - размерность пространства признаков. Этот подход существенно более удачен, чем предыдущий, если соответствующим образом нормализовать признаковое описание (см. ниже.)
* Ещё один подход заключается в том, чтобы решить исходную оптимизационную задачу в случае статистически независимых признаков, линейной функции активации (<tex>\varphi</tex>) и квадратичной функции потерь (<tex>L</tex>). Тогда решение имеет вид:
* Ещё один подход заключается в том, чтобы решить исходную оптимизационную задачу в случае статистически независимых признаков, линейной функции активации (<tex>\varphi</tex>) и квадратичной функции потерь (<tex>L</tex>). Тогда решение имеет вид:
-
::
+
:: <tex>w_j \, {:=} \, \frac{<y, f_j>}{<f_j, f_j>}</tex>.

Версия 13:44, 3 января 2010

y^*: \: X \to Y
X^l \, = \, (x_i,y_i)_{i=1}^l, \; y_i \, = \, y^*(x_i)
Q(w) \, = \, \sum_{i=1}^l L(a(x_i, w), \, y_i) \to \min_w
w \, {:=} \, w \, - \, \eta \nabla Q(w)
w \, {:=} \, w \, - \, \eta \sum_{i=1}^l L_a^\prime (a(x_i, w), \, y_i) \varphi^\prime (<w, x_i>)x_i
w_j \, {:=} \, \frac{<y, f_i>}{<f_i, f_j>}
x^j \, {:=} \, \frac{x^j \, - \, x_{\min}^j}{x_{\max}^j \, - \, x_{\min}^j}
w

Содержание

Метод стохастического градиента (Stochastic Gradient)

Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении. Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов w в линейном классификаторе (ссылка). Пусть y^*: \: X \to Y - целевая зависимость, известная только на объектах обучающей выборки: X^l \, = \, (x_i,y_i)_{i=1}^l, \; y_i \, = \, y^*(x_i).

Найдём алгоритм a(x, w), аппроксимирующий зависимость y^*. Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу: Q(w) \, = \, \sum_{i=1}^l L(a(x_i, w), \, y_i) \to \min_w, где L(a,y) - заданная функция потерь.

Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента):

w \, {:=} \, w \, - \, \eta \nabla Q(w),

где \eta - положительный параметр, называемый темпом обучения (learning rate).

Возможно 2 основных подхода к реализации градиентного спуска:

  • Пакетный (batch), когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется w. Это требует больших вычислительных затрат.
  • Стохастический (stochastic/online), когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.

Алгоритм Stochastic Gradient (SG)

Вход:

  • X^l - обучающая выборка
  • \eta - темп обучения
  • \lambda - параметр сглаживания функционала Q

Выход:

  • Вектор весов w

Тело:

  1. Инициализировать веса w_j \; j = 0, \dots, n;
  2. Инициализировать текущую оценку функционала:
    Q \, {:=} \, \sum_{i=1}^l L(a(x_i, w), \, y_i);
  3. Повторять:
    1. Выбрать объект x_i из X^l (например, случайным образом);
    2. Вычислить выходное значение алгоритма a(x_i, w) и ошибку:
      \varepsilon_i \, {:=} \, L(a(x_i, w), \, y_i);
    3. Сделать шаг градиентного спуска:
      w \, {:=} \, w \, - \, \eta L_a^\prime (a(x_i, w), \, y_i) \varphi^\prime (<w, x_i>)x_i;
    4. Оценить значение функционала:
      Q \, {:=} \, (1 \, - \, \lambda)Q \, + \, \lambda\varepsilon_i;
  4. Пока значение Q не стабилизируется и/или веса w не перестанут изменяться.

Порядок выбора объектов

Выше сказано, что в случае стохастического градиентного спуска объекты следует выбирать случайным образом. Однако существуют эвристики, направленные на улучшение сходимости, которые слегка модифицируют обычный случайный выбор:

  • Перемешивание (shuffling). Предлагается случайно выбирать объекты, но попеременно из разных классов. Идея в том, что объекты из разных классов скорее всего менее "похожи", чем объекты из одного класса, поэтому вектор w будет каждый раз сильнее изменяться.
  • Возможен вариант алгоритма, когда выбор каждого объекта неравновероятен, причём вероятность выпадения объекта обратно пропорциональна величине ошибки на объекте. Следует заметить, что при такой эвристике метод становится очень чувствителен к шумам.

Способы инициализации весов

  • Инициализировать вектор w нулями. Этот способ используется очень во многих системах, но совсем не всегда является удачным.
  • w_j {:=} rand(-\frac{1}{n}, \frac{1}{n}), где n - размерность пространства признаков. Этот подход существенно более удачен, чем предыдущий, если соответствующим образом нормализовать признаковое описание (см. ниже.)
  • Ещё один подход заключается в том, чтобы решить исходную оптимизационную задачу в случае статистически независимых признаков, линейной функции активации (\varphi) и квадратичной функции потерь (L). Тогда решение имеет вид:
w_j \, {:=} \, \frac{<y, f_j>}{<f_j, f_j>}.
Личные инструменты