Участник:Platonova.Elena/Песочница
Материал из MachineLearning.
| Строка 1: | Строка 1: | ||
| - | '''Сравнение работы ЕМ-алгоритма и k-means для смесей с экспоненциальным распределением компонент.''' (  | + | '''Сравнение работы ЕМ-алгоритма и k-means для смесей с экспоненциальным распределением компонент.''' (будет в заголовке)  | 
| + | В статье приведены примеры классификации ЕМ-алгоритмом и методом k ближайших соседей двумерной смеси, компоненты которой имеют экспоненциальное распределение.  | ||
=='''Краткое описание исследуемых алгоритмов'''==  | =='''Краткое описание исследуемых алгоритмов'''==  | ||
| Строка 10: | Строка 11: | ||
<tex>w_j</tex> - априорная вероятность <tex>j</tex>-й компоненты. Функции правдоподобия принадлежат параметрическому семейству распределений <tex>\varphi(x; \theta)</tex> и отличаются только значениями параметра <tex>p_j(x) = \varphi(x; \theta_j)</tex>  | <tex>w_j</tex> - априорная вероятность <tex>j</tex>-й компоненты. Функции правдоподобия принадлежат параметрическому семейству распределений <tex>\varphi(x; \theta)</tex> и отличаются только значениями параметра <tex>p_j(x) = \varphi(x; \theta_j)</tex>  | ||
| + | |||
| + | |||
| + | '''Вывод формул для алгоритма'''  | ||
| + | ----  | ||
'''Вход''':   | '''Вход''':   | ||
| Строка 18: | Строка 23: | ||
<tex>\theta = (\omega_1, \omega_2, ..., \omega_k, \theta_1, \theta_2, ..., \theta_k)</tex> параметры распределения и весы компонент.  | <tex>\theta = (\omega_1, \omega_2, ..., \omega_k, \theta_1, \theta_2, ..., \theta_k)</tex> параметры распределения и весы компонент.  | ||
| - | '''ОМП θ'''  | + | '''Оценка максимального правдоподобия (ОМП) θ'''  | 
для одно- и двумерного случая экспоненциального распределения.  | для одно- и двумерного случая экспоненциального распределения.  | ||
| Строка 37: | Строка 42: | ||
<center><tex>\frac{\partial}{\partial \theta_j}\sum_{i=1}^mg_{ij}(ln \theta_j - \theta_jx_i)=0</tex></center>  | <center><tex>\frac{\partial}{\partial \theta_j}\sum_{i=1}^mg_{ij}(ln \theta_j - \theta_jx_i)=0</tex></center>  | ||
| - | В одномерном случае:  | + | ''В одномерном случае'':  | 
<tex>\theta_j=\frac{\sum_{i=1}^mg_{ij}}{\sum_{i=1}^mx_ig_{ij}}</tex>  | <tex>\theta_j=\frac{\sum_{i=1}^mg_{ij}}{\sum_{i=1}^mx_ig_{ij}}</tex>  | ||
| - | В двумерном случае:  | + | ''В двумерном случае'':  | 
<tex>\theta_{jx}=\frac{\sum_{i=1}^mg_{ij}}{\sum_{i=1}^mx_ig_{ij}}\\\theta_{jy}=\frac{\sum_{i=1}^mg_{ij}}{\sum_{i=1}^my_ig_{ij}}</tex>  | <tex>\theta_{jx}=\frac{\sum_{i=1}^mg_{ij}}{\sum_{i=1}^mx_ig_{ij}}\\\theta_{jy}=\frac{\sum_{i=1}^mg_{ij}}{\sum_{i=1}^my_ig_{ij}}</tex>  | ||
| Строка 50: | Строка 55: | ||
'''Постановка задачи'''  | '''Постановка задачи'''  | ||
| + | |||
| + | ----  | ||
Пусть <tex>X \in \mathbb{R}^n\</tex> - множество объектов; <tex>Y</tex> - множество допустимых ответов. Задана обучающая выборка <tex>\{(x_i,y_i)\}_{i=1}^\ell</tex>. Задано множество объектов <tex>\ X^m =\{x_i\}_{i=1}^m</tex>.  | Пусть <tex>X \in \mathbb{R}^n\</tex> - множество объектов; <tex>Y</tex> - множество допустимых ответов. Задана обучающая выборка <tex>\{(x_i,y_i)\}_{i=1}^\ell</tex>. Задано множество объектов <tex>\ X^m =\{x_i\}_{i=1}^m</tex>.  | ||
| Строка 73: | Строка 80: | ||
В рассматриваемом примере <tex>w(i,x) = [i\leq k] ,</tex> что соответствует методу <tex>k</tex> ближайших соседей.  | В рассматриваемом примере <tex>w(i,x) = [i\leq k] ,</tex> что соответствует методу <tex>k</tex> ближайших соседей.  | ||
| - | + | ==Пример работы №1==  | |
| + | Смесь из двух компонент - см. рис  | ||
{{Задание|Platonova.Elena|Константин Воронцов|7 января 2010}}  | {{Задание|Platonova.Elena|Константин Воронцов|7 января 2010}}  | ||
Версия 11:51, 4 января 2010
Сравнение работы ЕМ-алгоритма и k-means для смесей с экспоненциальным распределением компонент. (будет в заголовке) В статье приведены примеры классификации ЕМ-алгоритмом и методом k ближайших соседей двумерной смеси, компоненты которой имеют экспоненциальное распределение.
Содержание | 
Краткое описание исследуемых алгоритмов
ЕМ алгоритм
Основа EM-алгоритма - предположение, что исследуемое множество данных может быть представлено с помощью линейной комбинации распределений, а цель - оценка параметров распределения, которые максимизируют логарифмическую функцию правдоподобия, используемую в качестве меры качества модели.
Пусть рассматривается смесь из  распределений, каждое описывается функцией правдоподобия 
 - априорная вероятность 
-й компоненты. Функции правдоподобия принадлежат параметрическому семейству распределений 
 и отличаются только значениями параметра 
Вывод формул для алгоритма
Вход:
 – общая длина выборки
Выход:
 параметры распределения и весы компонент.
Оценка максимального правдоподобия (ОМП) θ
для одно- и двумерного случая экспоненциального распределения.
Необходимо максимизировать
Из Лагранжиана следует:
    j=1,...,k 
     j=1,...,k.
С учетом  получаем ОМП 
 для экспоненциального закона:
В одномерном случае:
В двумерном случае:
k-means (k ближайших соседей)
Метод  ближайших соседей - это метрический алгоритм классификации, основанный на оценивании сходства объектов. Классифицируемый объект относится к тому классу, которому принадлежат ближайшие к нему объекты обучающей выборки.
Постановка задачи
Пусть  - множество объектов; 
 - множество допустимых ответов. Задана обучающая выборка 
. Задано множество объектов 
.
Требуется найти множество ответов 
 для объектов 
.
На множестве объектов задается некоторая функция расстояния, в данном случае   - максимум модулей
Для произвольного объекта  расположим
объекты обучающей выборки 
 в порядке возрастания расстояний до 
:
где через  обозначается 
тот объект обучающей выборки, который является 
-м соседом объекта 
.
Аналогично для ответа на 
-м соседе:
.
Таким образом, произвольный объект  порождает свою перенумерацию выборки.
В наиболее общем виде алгоритм ближайших соседей есть
где  — заданная весовая функция,
которая оценивает степень важности 
-го соседа для классификации объекта 
.
В рассматриваемом примере  что соответствует методу 
 ближайших соседей.
Пример работы №1
Смесь из двух компонент - см. рис
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

