Участник:Platonova.Elena/Песочница
Материал из MachineLearning.
| Строка 90: | Строка 90: | ||
В результате работы ЕМ-алгоритма с последовательным добавлением компонент с параметрами R = 30, M = 20, Delta = 0,001 восстанавливается <tex>\theta_1 = (1.01831, 0.0101044)</tex>, <tex>\theta_2=(0.0104461, 0.917726)</tex>  | В результате работы ЕМ-алгоритма с последовательным добавлением компонент с параметрами R = 30, M = 20, Delta = 0,001 восстанавливается <tex>\theta_1 = (1.01831, 0.0101044)</tex>, <tex>\theta_2=(0.0104461, 0.917726)</tex>  | ||
| - | + | '''Количество ошибок при классификации:'''  | |
| - | ЕМ 1 из 500 (2%)  | + | ''ЕМ'' 1 из 500 (2%)  | 
| - | k-means (k=1) 0 из 500  | + | ''k-means (k=1)'' 0 из 500  | 
| - | k-means (k=5) 0 из 500  | + | ''k-means (k=5)'' 0 из 500  | 
Версия 12:35, 4 января 2010
Сравнение работы ЕМ-алгоритма и k-means для смесей с экспоненциальным распределением компонент. (будет в заголовке)
В статье приведены примеры классификации ЕМ-алгоритмом и методом k ближайших соседей двумерной смеси, компоненты которой имеют экспоненциальное распределение.
Содержание | 
Краткое описание исследуемых алгоритмов
ЕМ алгоритм
Основа EM-алгоритма - предположение, что исследуемое множество данных может быть представлено с помощью линейной комбинации распределений, а цель - оценка параметров распределения, которые максимизируют логарифмическую функцию правдоподобия, используемую в качестве меры качества модели.
Пусть рассматривается смесь из  распределений, каждое описывается функцией правдоподобия 
 - априорная вероятность 
-й компоненты. Функции правдоподобия принадлежат параметрическому семейству распределений 
 и отличаются только значениями параметра 
Вывод формул для алгоритма
Вход:
 – общая длина выборки
Выход:
 параметры распределения и весы компонент.
Оценка максимального правдоподобия (ОМП) θ
для одно- и двумерного случая экспоненциального распределения.
Необходимо максимизировать
Из Лагранжиана следует:
    j=1,...,k 
     j=1,...,k.
С учетом  получаем ОМП 
 для экспоненциального закона:
В одномерном случае:
В двумерном случае:
k-means (k ближайших соседей)
Метод  ближайших соседей - это метрический алгоритм классификации, основанный на оценивании сходства объектов. Классифицируемый объект относится к тому классу, которому принадлежат ближайшие к нему объекты обучающей выборки.
Постановка задачи
Пусть  - множество объектов; 
 - множество допустимых ответов. Задана обучающая выборка 
. Задано множество объектов 
.
Требуется найти множество ответов 
 для объектов 
.
На множестве объектов задается некоторая функция расстояния, в данном случае   - максимум модулей
Для произвольного объекта  расположим
объекты обучающей выборки 
 в порядке возрастания расстояний до 
:
где через  обозначается 
тот объект обучающей выборки, который является 
-м соседом объекта 
.
Аналогично для ответа на 
-м соседе:
.
Таким образом, произвольный объект  порождает свою перенумерацию выборки.
В наиболее общем виде алгоритм ближайших соседей есть
где  — заданная весовая функция,
которая оценивает степень важности 
-го соседа для классификации объекта 
.
В рассматриваемом примере  что соответствует методу 
 ближайших соседей.
Примеры работы
Пример работы №1
Смесь из двух компонент - см. рис
В результате работы ЕМ-алгоритма с последовательным добавлением компонент с параметрами R = 30, M = 20, Delta = 0,001 восстанавливается , 
Количество ошибок при классификации:
ЕМ 1 из 500 (2%)
k-means (k=1) 0 из 500
k-means (k=5) 0 из 500
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

