Метод потенциальных функций

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (См. также)
м (См. также: викификация)
Строка 88: Строка 88:
* [[Метод парзеновского окна]]
* [[Метод парзеновского окна]]
* [[Сеть радиальных базисных функций]]
* [[Сеть радиальных базисных функций]]
-
<br /><br />
 
 +
== Ссылки ==
* [http://en.wikipedia.org/wiki/Nearest_neighbor_search Nearest neighbour search (english wikipedia)]
* [http://en.wikipedia.org/wiki/Nearest_neighbor_search Nearest neighbour search (english wikipedia)]
[[Категория:Метрические алгоритмы классификации]]
[[Категория:Метрические алгоритмы классификации]]
{{Задание|osa|Константин Воронцов|25 января 2010}}
{{Задание|osa|Константин Воронцов|25 января 2010}}

Версия 23:22, 18 января 2010

Метод потенциальных функций - метрический классификатор, частный случай метода ближайших соседей. Позволяет с помощью простого алгоритма оценивать вес («важность») объектов обучающей выборки при решении задачи классификации.


Содержание

Постановка задачи классификации

Приведём краткую постановку задачи классификации в общем виде.

Пусть имеется пространство объектов X и конечное множество классов Y. На множестве X задана функция расстояния \rho: X \times X \to [0, + \infty]. Каждый объект из X относится к некоторому классу из Y посредством отображения y^*:~X \to Y, .

Пусть также задана обучающая выборка пар «объект—ответ»: X^m = \{(x_1,y_1),\dots,(x_m,y_m)\} \subseteq X \times Y.

Требуется построить алгоритм a(u,X^l), который по заданной выборке X^l аппроксимирует отображение y^*(u).


Идея метода

Общая идея метода иллюстрируется на примере электростатического взаимодействия элементарных частиц. Известно, что потенциал («мера воздействия») электрического поля элементарной заряженной частицы в некоторой точке пространства пропорционален отношению заряда частицы (Q) к расстоянию до частицы (r): \varphi(r) \sim \frac{Q}{r}.

Метод потенциальных функций реализует полную аналогию указанного выше примера. При классификации объект проверяется на близость к объектам из обучающей выборки. Считается, что объекты из обучающей выборки «заряжены» своим классом, а мера «важности» каждого из них при классификации зависит от его «заряда» и расстояния до классифицируемого объекта.


Основная формула

Перенумеруем объекты обучающей выборки x_i \in X^l относительно удаления от объекта u индексами x_u^{p} (p=\overline{1,l}) — то есть таким образом, что \rho(u,x_u^{(1)}) \leq \rho(u,x_u^{(2)}) \leq \dots \leq \rho(u,x_u^{(l)}).

В общем виде, алгоритм ближайших соседей есть:

a(u) = \mathrm{arg}\max_{y\in Y} \sum_{i=1}^m \bigl[ x_{i; u}=y \bigr] w(i,u), где w(i,u)мера «важности» (вес) объекта x_u^{(i)} из обучающей выборки относительно классифицируемого объекта u.

Метод потенциальных функций заключается в выборе в качестве w(i,u) весовой функции следующего вида:

w(i,u)=\gamma(x_u^{(i)}) K \left(\frac{\rho(u,x_u{(i)})}{h(x_u{(i)})}\right), где
  • K(r) = \frac{1}{r+a} — функция, убывающая с ростом аргумента. Константа a нужна чтобы избежать проблем с делением на ноль. Для простоты обычно полагают a=1.
  • \rho(u,x_u{(i)}) — расстояние от объекта u до i-того ближайшего к u объекта — x_u^{(i)}.
  • \gamma(x_u^{(i)}) — параметр. Общий смысл — «заряд» или степень «важности» объекта x_i \in X^l, \left(i=\overline{1,l}\right) при классификации;

Выбор параметров

Как мы уже заметили, в основной формуле метода потенциальных функций используются две группы параметров: \{h(x_i)\} и \{\gamma(x_i)\}.

«Ширина окна потенциала» h(x_i) выбирается для каждого объекта из эмпирических соображений.

«Важность» \gamma(x_i) объектов выборки можно подобрать, исходя из информации, содержащейся в выборке. Ниже приведён алгоритм, который позволяет «обучать» параметры (\gamma(x_1), \dots, \gamma(x_n)), то есть подбирать их значения по обучающей выборке X^l.

Алгоритм

Вход

Обучающая выборка из l пар «объект-ответ» — X^l=\left((x_1,y_1), \dots, (x_l,y_l) \right).

Описание алгоритма

  • Начало. Инициализация: \gamma_i:=0 для всех i=\overline{1,l};
  • Повторять:
    • Выбрать очередной объект x_i из выборки X^l;
    • Если a(x_i) \not= y_i, то \gamma_i:=\gamma_i+1;
  • Пока Q(a,X^l) > \varepsilon (то есть пока процесс не стабилизируется);
  • Вернуть значения \gamma_i для всех i=\overline{1,l}.

Результат

Значения параметров \gamma_i \equiv \gamma(x_i) для всех i=\overline{1,l}

Преимущества и недостатки

Преимущества метода потенциальных функций:

  • Метод прост для понимания и алгоритмической реализации;
  • Порождает потоковый алгоритм;
  • Хранит лишь часть выборки, следовательно, экономит память.

Недостатки метода:

  • Порождаемый алгоритм медленно сходится;
  • Параметры \{\gamma_i\} и \{h_i\} настраиваются слишком грубо;
  • Значения параметров (\gamma_1,\dots,\gamma_l) зависят от порядка выбора объектов из выборки X^l.

Замечания

Полученные в результате работы алгоритма значения параметров (\gamma_1,\dots,\gamma_l) позволяют выделить из обучающей выборки подмножество эталонов — наиболее значимых с точки зрения классификации объектов. Как нетрудно видеть, теоретически на роль эталона подходит любой объект x_i с ненулевой «значимостью» \left(\gamma_i>0 \right).

См. также

Ссылки

Данная статья является непроверенным учебным заданием.
Студент: Участник:osa
Преподаватель: Участник:Константин Воронцов
Срок: 25 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты