SVM регрессия (пример)
Материал из MachineLearning.
| Строка 172: | Строка 172: | ||
| <tex>\Uparrow</tex>Вектор порождающих функций: f = [x, exp(-x), diag(x)*(x), 0*cos(x), sqrt(x), diag(x)*sqrt(x), x.^0]; | <tex>\Uparrow</tex>Вектор порождающих функций: f = [x, exp(-x), diag(x)*(x), 0*cos(x), sqrt(x), diag(x)*sqrt(x), x.^0]; | ||
| + | |||
| + | == Исходный код == | ||
| + | |||
| + | == Смотри также == | ||
| + | [[машина опорных векторов]] | ||
| + | [http://en.wikipedia.org/wiki/Support_vector_machine#Regression Википедия] | ||
| + | [http://kernelsvm.tripod.com/ tripod.com] | ||
| + | |||
| + | == Литература == | ||
| + | *Alex J. Smola, Bernhard Schölkopf. A tutorial on support vector regression. DOI Bookmark: [http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88 10.1023/B:STCO.0000035301.49549.88] | ||
| {{Задание|Алексей Корниенко|В.В.Стрижов|28 мая 2010}} | {{Задание|Алексей Корниенко|В.В.Стрижов|28 мая 2010}} | ||
Версия 00:08, 29 апреля 2010
SVM (Support Vector Machine, машина опорных векторов) — это особый класс алгоритмов, который характеризуется использованием ядер, отсутствием локальных минимумов, и используется для решения задач классификации и регрессии. В этой статье рассматривается пример использования метода опорных векторов в задачах регрессии.
| Содержание | 
Постановка задачи
Дано: Обучающая выборка , где 
-признаковое описание i-го объекта, 
 - характеристика, приписываемая объекту. Функция потерь имеет вид 
 для каждого вектора 
, где 
.
Найти: такую функцию , которая описывает зависимость 
 наилучшим образом.
Алгоритм
В этом примере решается задача построения линейной SVM регрессии. Для этого решается прямая задача минимизации функционала потерь, в предположении что решение задается линейной комбинацией неких порождающих функций, из которых можем составить вектор-функцию 
. 
Тогда функционал примет вид:
В предположении что
Для этого вводятся обозначение  и дополнительные переменные 
 и 
:
- , - , - . 
 
Геометрический смысл  и 
:
Далее решается задача квадратичного программирования:
Эту же задачу можно преобразовать к виду , при условии, что 
а также, 
, где 
 - вектор-столбец, составленный из столбцов 
, тоесть, где все переменные объеденены в один столбец неизвестных. В таких обозначениях 
, где единиц и нулей в 
 и 
 соответственно столько же, сколько порождающих фукций, а размерность матрицы 
 и вектора 
 равна размерности 
.
Теперь построим матрицу А и столбцы  и 
. Преобразуем задачу квадратичного программирования к виду
Получаем,
, и количество минус бесконечностей в lb равно количеству порождающих функций, а количество нулей равно 
.
Таким образом, мы свели задачу к задаче квадратичного программирования.
В нашем примере значения С,  и порождающие функции задаются экспертом.
Вычислительный эксперимент
Вычислительный эксеримент состоит из трех основных частей:
- Генерация данных;
- Работа алгоритма;
- Визуализация и анализ данных.
Генерация данных
При генерации данных мы выбираем некую линейную комбинацию наших порождающих функций, и добаляем к ней случайный шум. В ходе эксперимента исследуются различные, как дискретные, так и непрерывные шумы.
Нормальное распределение
 дисперсия=1
 дисперсия=0.1
 Зависимость весов соответствующих функций от обратной дисперсии
Пуассоновское распределение
Пуассоновское распределение с большой дисперсией
 Пуассоновское распределение с малой дисперсией, получаем почти точное решение
Часть предыдущего графика, на которой мы видим, что даже с иделаьными данными мы не получим идеальное приближение, т.к. среди прочего минимизируем 
 Зависимость весов соответствующих функций от параметра
Равномерное распределение
 Работа алгоритма на примере с равномерным шумом. На этом графике шум равномерно распределен на отрезке 
 Зависимость весов соответствующих функций от параметра
Распределение sin(unif)
Тест на распределении вида sin(unifrnd(-3.1415/2,3.1415/2))/parameter, тоесть синуса от равномерного распределения.
 Если выбрать большую амплитуду(=5), решение может сильно отличаться от верного
 При малых(=0.5) такого не наблюдается.
 Зависимость весов соответствующих функций от параметра
Реальные данные
Пример взят из Репозитория UCI. В этом примере рассматриваются автомобили 1970-1973 года выпуска. Строится зависимость мощьности автомобиля [л.с.] от веса [кг]
Пример иллюстрирует, что очень важно правильно выбирать порождающие функции. Хотя потери меньше, чем на следующем графике, такое решение не является достаточно точным.
Вектор порождающих функций: f = [x, exp(-x), sin(x), cos(x), sqrt(x), diag(x)*sqrt(x), x.^0];
Вектор порождающих функций: f = [x, exp(-x), diag(x)*(x), 0*cos(x), sqrt(x), diag(x)*sqrt(x), x.^0];
Исходный код
Смотри также
машина опорных векторов Википедия tripod.com
Литература
- Alex J. Smola, Bernhard Schölkopf. A tutorial on support vector regression. DOI Bookmark: 10.1023/B:STCO.0000035301.49549.88
|   | Данная статья является непроверенным учебным заданием. 
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. | 
















