Прогнозирование временных рядов методом SSA (пример)
Материал из MachineLearning.
(→Описание алгоритма) |
(→Описание алгоритма) |
||
Строка 24: | Строка 24: | ||
<tex>$$C = \frac1n ZZ^T.$$</tex> | <tex>$$C = \frac1n ZZ^T.$$</tex> | ||
+ | |||
+ | Выполним её svd-разложение: | ||
+ | |||
+ | <tex>$$C = V\LambdaV^T,$$</tex> | ||
+ | |||
+ | где <tex>$\Lambda = diag(\lambda_1, \ldots, \lambda_{\tau})$</tex> - диагональная матрица собственных чисел, <tex>$V = (v^{(1)}, \ldots, v^{(\tau)}), (v^{(i)})^T v^{(j)} = \delta_{ij}$</tex> - ортогональная матрица собственных векторов. | ||
+ | |||
+ | Далее рассмотрим систему главных компонент: | ||
+ | |||
+ | <tex>$$U = V^T Z, U = (U^{(1)}, \ldots, U^{(\tau)})^T.$$</tex> | ||
+ | |||
+ | После проведения анализа главных компонент обычно предполагается проведение операции восстановления исходной матрицы наблюдений по некоторому поднабору главных компонент, т. е. для <tex>$V' = (v^{(i_1)}, \ldots, v^{(i_r)})$</tex> и <tex>$U' = V'^T Z$</tex> вычисляется матрица <tex>$Z' = V'U'$</tex>. Далее восстанавливаются исходные последовательности: | ||
+ | |||
+ | <tex>$$f'_m^{(k)} = \left\{ \begin{array}{ll} \frac1m \sum_{i=1}^m x_i^{(m-i+1,k)}&1\le m\le \sigma,\\ \frac{1}{\sigma} \sum_{i=1}^{\sigma} x_i^{(m-i+1,k)}&\sigma \le m \le n,\\ \frac{1}{N-m+1} \sum_{i=1}^{N-m+1} x_{i+m-n}^{n-i+1,k)&n \le m \le N.\end{array} \right$$</tex> |
Версия 15:44, 5 мая 2010
SSA (Singular Spectrum Analysis, "Гусеница") - метод анализа и прогноза временных рядов. Базовый вариант метода состоит в преобразовании одномерного ряда в многомерный с помощью однопараметрической сдвиговой процедуры (отсюда и название "Гусеница"), исследовании полученной многомерной траектории с помощью анализа главных компонент (сингулярного разложения) и восстановлении (аппроксимации) ряда по выбранным главным компонентам. Таким образом, результатом применения метода является разложение временного ряда на простые компоненты: медленные тренды, сезонные и другие периодические или колебательные составляющие, а также шумовые компоненты. Полученное разложение может служить основой прогнозирования как самого ряда, так и его отдельных составляющих. "Гусеница" допускает естественное обобщение на многомерные временные ряды, а также на случай анализа изображений. В данной статье рассмотрим вариант алгоритма, предназначенный для анализа многомерного временного ряда.
Постановка задачи
Наблюдается система функций дискретного аргумента {, где k = 1, ..., s}. Параметр s, таким образом, имеет смысл размерности многомерной числовой последовательности, а N - количество элементов в последовательности. Требуется разложить ряд в сумму компонент (используя метод главных компонент, см. описание алгоритма), интерпретировать каждую компоненту, и построить продолжение ряда по выбранным компонентам.
Описание алгоритма
Выберем n такое, что - время жизни многомерной гусеницы. Пусть - длина гусеницы. Построим последовательность из n векторов в , , следующего вида:
где . Обозначим
Будем называть нецентрированной матрицей наблюдений, порождённой гусеницей со временем жизни n. Проводимый в дальнейшем анализ главных компонент может проводиться как по центрированной, так и по нецентрированной выборкам. Для упрощения выкладок рассмотрим простейший нецентрированный вариант.
Рассмотрим ковариационную матрицу полученной многомерной выборки
Выполним её svd-разложение:
где - диагональная матрица собственных чисел, - ортогональная матрица собственных векторов.
Далее рассмотрим систему главных компонент:
После проведения анализа главных компонент обычно предполагается проведение операции восстановления исходной матрицы наблюдений по некоторому поднабору главных компонент, т. е. для и вычисляется матрица . Далее восстанавливаются исходные последовательности: