Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
 (→Литература)  | 
				м   | 
			||
| Строка 22: | Строка 22: | ||
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.  | Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.  | ||
=== Методика Belsley, Kuh, и Welsch (BKW) ===  | === Методика Belsley, Kuh, и Welsch (BKW) ===  | ||
| - | Диагностика Коллинеарности BKW основана на двух элементах, относящихся к <tex> n \times p</tex> матрице данных <tex>X </tex> использующейся в линейной регрессии <tex> y = X \beta + \epsilon</tex> : the scaled condition indexes и the  variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы <tex>X</tex>: <tex> X=UD{V^{T}}</tex>, где <tex>{U}^{T}U={V}^{T}V={I}_{p}</tex> и <tex>D</tex> - диогональная с неотрицательными элементами <tex>{\mu}_{1},...,{\mu}_{p}</tex> называющимися сингулярными значениями <tex>X</tex> :  | + | Диагностика Коллинеарности BKW основана на двух элементах, относящихся к <tex> n \times p</tex> матрице данных <tex>X </tex> использующейся в линейной регрессии <tex> y = X \beta + \epsilon</tex> : индексы состояния(the scaled condition indexes) и the  variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы <tex>X</tex>: <tex> X=UD{V^{T}}</tex>, где <tex>{U}^{T}U={V}^{T}V={I}_{p}</tex> и <tex>D</tex> - диогональная с неотрицательными элементами <tex>{\mu}_{1},...,{\mu}_{p}</tex> называющимися сингулярными значениями <tex>X</tex>. Индексы состояния это:  | 
| - | <tex>{\eta}_{k}\equiv\frac{{\mu}_{max}}{{\mu}_{k}}</tex>, <tex>k=1,...,p</tex>  | + | <tex>{\eta}_{k}\equiv\frac{{\mu}_{max}}{{\mu}_{k}}</tex>, <tex>k=1,...,p</tex> <br />  | 
| - | <tex>\mbox{var}({b}_{k})={\sigma}^{2}	\sum_{j} {\frac{{\upsilon}^{2}_{kj}}{{\mu}^{2}_{j}}}</tex>  | + | <tex>{\eta}_{k} \geq 0 </tex> для всех <tex>k</tex>. Большое значение <tex>{\eta}_{k}</tex> указывает на зависимость близкую к линейной между признаками и чем больше <tex>{\eta}_{k}</tex> тем сильнее зависимость. Дисперсионные соотношения разложения проистекают из того факта, что используя SVD ковариационная матрица метода наименьших квадратов <tex> b=(X^{T}X)^{-1}X^{T}y</tex> может записана как:<br /> <tex> V(b)={\sigma}^{2}(X^{T}X)^{-1} = {\sigma}^{2}V D^{-2} V^{T}</tex> (3)<br />  | 
| + | где <tex>{\sigma}^{2}</tex> это дисперсия возмущения <tex>\varepsilon</tex>. Таким образом дисперсия k-го регрессионного коэффициента <tex>{b}_{k}</tex> это k-й диогональный элемент (3): <br />  | ||
| + | |||
| + | <tex>\mbox{var}({b}_{k})={\sigma}^{2}	\sum_{j} {\frac{{\upsilon}^{2}_{kj}}{{\mu}^{2}_{j}}}</tex><br />  | ||
, <tex>V\equiv({\upsilon}_{ij})</tex>  | , <tex>V\equiv({\upsilon}_{ij})</tex>  | ||
{| class="wikitable" style="text-align: center;"  | {| class="wikitable" style="text-align: center;"  | ||
Версия 11:45, 7 июня 2010
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание | 
Постановка задачи
Задана выборка  откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию 
.
Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров модели от дисперсии случайной переменной и выбросов в выборке.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
Дисперсия :
 
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где  — коэффициент детерминации j-го признака относительно остальных:
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение  велико, то 
 — мало, то есть 
 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Методика Belsley, Kuh, и Welsch (BKW)
Диагностика Коллинеарности BKW основана на двух элементах, относящихся к  матрице данных 
 использующейся в линейной регрессии 
 : индексы состояния(the scaled condition indexes) и the  variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы 
: 
, где 
 и 
 - диогональная с неотрицательными элементами 
 называющимися сингулярными значениями 
. Индексы состояния это:
, 
 
 для всех 
. Большое значение 
 указывает на зависимость близкую к линейной между признаками и чем больше 
 тем сильнее зависимость. Дисперсионные соотношения разложения проистекают из того факта, что используя SVD ковариационная матрица метода наименьших квадратов 
 может записана как:
  (3)
где  это дисперсия возмущения 
. Таким образом дисперсия k-го регрессионного коэффициента 
 это k-й диогональный элемент (3): 
, 
| Condition index | ||||
|---|---|---|---|---|
|   |   |   | ... |   | 
|   |   | ... | ... |   | 
| . | . | . | . | |
| . | . | . | . | |
| . | . | . | . | |
|   |   |   | ... |   | 
, 
, 
, 
, 
 
далее
, 
,
, 
Вычислительный эксперимент
Исходный код
Смотри также
Литература
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

