Метод Белсли

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск

E1ekt (Обсуждение | вклад)
(Новая: Линейные регрессионные модели часто используются для исследования зависимости между ответом и приз...)
К следующему изменению →

Версия 14:25, 27 июня 2010

Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).

Содержание

Анализ коллинеарности

Линейная регрессионная модель:
y=X \beta + \varepsilon
где y - n-мерный ветор ответа(зависимой переменной), X - n x p (n>p) матрица признаков \beta - p-мерный вектор неизвестных коэффициентов, \varepsilon - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей {\sigma}^2 I, где I это n x n единичная матрица, а {\sigma}^2>0. Будем считать что X имеет ранг p. Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения X определяется как:
X=UDV^T
Где U - n x p ортогональная матрица, D - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями X, V - p x p ортогональная матрица, чьи колонки это собственные вектора X^T X. Если существует коллинеарная зависимоть, то будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.

Анализ полученных данных

Смотри также

Литература

Личные инструменты