Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
м  (→Методика Belsley, Kuh, и Welsch (BKW))  | 
				м  (→Фактор инфляции дисперсии (VIF))  | 
			||
| Строка 9: | Строка 9: | ||
== Описание алгоритма ==  | == Описание алгоритма ==  | ||
=== [[Фактор инфляции дисперсии|Фактор инфляции дисперсии (VIF)]] ===  | === [[Фактор инфляции дисперсии|Фактор инфляции дисперсии (VIF)]] ===  | ||
| - | Дисперсия <tex>w_i</tex>:  | + | В задаче восстановления регрессии фактор инфляции дисперсии (VIF) — мера мультиколлинеарности. Он позволяет оценить увеличение дисперсии заданного коэффициента регрессии, происходящее из-за высокой корреляции данных.  | 
| + | Дисперсия <tex>w_i</tex> может быть выражена как:  | ||
<tex>D\hat{w}_j=\frac{\sigma^2}{(n-1)D x_j}\frac{1}{1-R_j^2}.</tex>   | <tex>D\hat{w}_j=\frac{\sigma^2}{(n-1)D x_j}\frac{1}{1-R_j^2}.</tex>   | ||
| Строка 17: | Строка 18: | ||
<tex>VIF_j=\frac{1}{1-R_j^2},</tex>  | <tex>VIF_j=\frac{1}{1-R_j^2},</tex>  | ||
| - | где <tex>R_j^2</tex> — [[коэффициент детерминации]] j-го признака относительно остальных  | + | где <tex>R_j^2</tex> — [[коэффициент детерминации]] j-го признака относительно остальных - фактически он содержит информацию о том, насколько точно можно построить регрессию для j-го признака относительно остальных, т.е его зависимость от них.   | 
| - | + | ||
<tex>R_j^2 \equiv 1-{\sum_{i=1}^n (x_{ij} - \hat{x}_{ij})^2 \over \sum_{i=1}^n (x_{ij}-\bar{\mathbf{x}}_j)^2},\.</tex>  | <tex>R_j^2 \equiv 1-{\sum_{i=1}^n (x_{ij} - \hat{x}_{ij})^2 \over \sum_{i=1}^n (x_{ij}-\bar{\mathbf{x}}_j)^2},\.</tex>  | ||
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.  | Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.  | ||
| + | |||
=== [[Методика Belsley|Методика Belsley, Kuh, и Welsch (BKW) ]]===  | === [[Методика Belsley|Методика Belsley, Kuh, и Welsch (BKW) ]]===  | ||
Диагностика коллинеарности BKW основана на двух элементах, относящихся к <tex> n \times p</tex> матрице данных <tex>X </tex> использующейся в линейной регрессии <tex> y = X \beta + \epsilon</tex> : индексы обусловленности(the scaled condition indexes) и дисперсионные доли(the  variance-decomposition proportions). Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы <tex>X</tex>: <tex> X=UD{V^{T}}</tex>, где <tex>{U}^{T}U={V}^{T}V={I}_{p}</tex> и <tex>D</tex> - диагональная с неотрицательными элементами <tex>{\mu}_{1},...,{\mu}_{p}</tex> называющимися сингулярными числами <tex>X</tex>. Индексы обусловленности это:<br />  | Диагностика коллинеарности BKW основана на двух элементах, относящихся к <tex> n \times p</tex> матрице данных <tex>X </tex> использующейся в линейной регрессии <tex> y = X \beta + \epsilon</tex> : индексы обусловленности(the scaled condition indexes) и дисперсионные доли(the  variance-decomposition proportions). Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы <tex>X</tex>: <tex> X=UD{V^{T}}</tex>, где <tex>{U}^{T}U={V}^{T}V={I}_{p}</tex> и <tex>D</tex> - диагональная с неотрицательными элементами <tex>{\mu}_{1},...,{\mu}_{p}</tex> называющимися сингулярными числами <tex>X</tex>. Индексы обусловленности это:<br />  | ||
Версия 19:43, 21 сентября 2010
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание | 
Постановка задачи
Задана выборка  признаков и зависимой переменной. Рассматривается линейная регрессионная модель вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию 
.
Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров от дисперсии случайной переменной.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
В задаче восстановления регрессии фактор инфляции дисперсии (VIF) — мера мультиколлинеарности. Он позволяет оценить увеличение дисперсии заданного коэффициента регрессии, происходящее из-за высокой корреляции данных.
Дисперсия  может быть выражена как:
 
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где  — коэффициент детерминации j-го признака относительно остальных - фактически он содержит информацию о том, насколько точно можно построить регрессию для j-го признака относительно остальных, т.е его зависимость от них. 
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение  велико, то 
 — мало, то есть 
 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Методика Belsley, Kuh, и Welsch (BKW)
Диагностика коллинеарности BKW основана на двух элементах, относящихся к  матрице данных 
 использующейся в линейной регрессии 
 : индексы обусловленности(the scaled condition indexes) и дисперсионные доли(the  variance-decomposition proportions). Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы 
: 
, где 
 и 
 - диагональная с неотрицательными элементами 
 называющимися сингулярными числами 
. Индексы обусловленности это:
, 
 
 для всех 
. Большое значение 
 указывает на зависимость близкую к линейной между признаками и чем больше 
 тем сильнее зависимость. Дисперсионные доли находятся из того факта, что используя SVD ковариационная матрица метода наименьших квадратов 
 может записана как:
 
где  это дисперсия возмущения 
. Таким образом дисперсия 
-го регрессионного коэффициента 
 это 
-й диогональный элемент (3): 
где  - сингулярные значения 
 и 
. 
Определим 
-е дисперсионное соотношение как долю дисперсии 
-го регрессионного коэффициента связанная с 
-м компонентом его разложения (4). Доля считается как:
 
, 
, 
 
Дисперсионное соотношение: 
 
, 
 
 
Данные удобно представить в виде таблицы: 
| Condition index | ||||
|---|---|---|---|---|
|   |   |   | ... |   | 
|   |   | ... | ... |   | 
| . | . | . | . | |
| . | . | . | . | |
| . | . | . | . | |
|   |   |   | ... |   | 
Перед использованием BKW необходимо отмасштабировать матрицу . Стандартно применяется приведение столбцов к одинаковой длинне(норму). Будем рассматривать отмасштабированные индексы обусловленности 
 :
 
, 
Алгоритм BKW
1. Стандартизация столбцов матрицы.
2. Вычисление индексов обусловленности и дисперсионных долей.
3. Определение количества зависимостей.
Превышение индексом обусловленности выбраного заранее порога означает наличие зависимости между признаками.
Относительная сила зависимости определяется положение значения индекса обусловленности в прогресии 1, 3, 10, 30, 100, 300, 1000 итд.
4. Определение признаков участвующих в зависимости. 
2 случая :
1) Только один достаточно большой индекс обусловленности - тогда возможно определение участвующих в зависимости признаков из дисперсионных долей: признак считается вовлеченным если его дисперсионная доля связанная с этим индексом превышает выбранный порог  (обычно 0.25).
2) Есть несколько больших индексов обусловленности. В этом случае вовлеченность признака в зависимость определяется по сумме его дисперсионных долей отвечающих большим значениям индекса обусловленности - когда сумма превышает порог  признак участвует как минимум в одной линейной зависимости.
Вычислительный эксперимент
Эксперимент проводится на модельных данных.
Исходный код
- Cкачать листинги алгоритмов можно здесь [1]
 
Смотри также
- Фактор инфляции дисперсии
 - Мультиколлинеарность
 - Метод наименьших квадратов
 - Линейная регрессия (пример)
 - Сингулярное разложение
 
Литература
- Gianfranco Galmacci, Collinearity Detection in Linear Regression. M: 1996 Kluwer Academic Publishers.
 - D. A. BELSLEY, A Guide to Using the Collinearity Diagnostics. M: 1991 Kluwer Academic Publishers.
 - К. В. Воронцов, Лекции по линейным алгоритмам классификации и регрессии
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

