Рациональная интерполяция

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (викификация, категория)
Строка 1: Строка 1:
==Введение==
==Введение==
-
Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто ''рациональное''), которое соответсвует отношению двух многочленов.
+
Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто ''рациональное''), которое соответствует отношению двух многочленов.
<tex>R(x)=\frac{a_0+a_1x+\dots+a_px^p}{b_0+b_1x+\dots+b_px^p}, p+q+1=n</tex>
<tex>R(x)=\frac{a_0+a_1x+\dots+a_px^p}{b_0+b_1x+\dots+b_px^p}, p+q+1=n</tex>
Строка 9: Строка 9:
<tex> \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\ldots, n</tex>
<tex> \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\ldots, n</tex>
-
Таким образом полычаем систему ''n'' линейных алгебраических уравнений относительно ''n+1'' неизыестных.
+
Таким образом получаем систему ''n'' линейных алгебраических уравнений относительно ''n+1'' неизвестных.
Функция ''R(x)'' может быть записана в явном виде в случаях, когда ''n'' нечетное и ''p=q'', и когда ''n'' четное и ''p-q=1''.
Функция ''R(x)'' может быть записана в явном виде в случаях, когда ''n'' нечетное и ''p=q'', и когда ''n'' четное и ''p-q=1''.
Для этого следует вычислить обратные разделенные разности, определяемые условиями
Для этого следует вычислить обратные разделенные разности, определяемые условиями
Строка 15: Строка 15:
<tex>f^{-}(x_k;x_l)=\frac{x_k-x_l}{f(x_k)-f(x_l)}</tex>
<tex>f^{-}(x_k;x_l)=\frac{x_k-x_l}{f(x_k)-f(x_l)}</tex>
-
и реккурентным соотношением
+
и рекуррентным соотношением
<tex> f^{-}(x_k;\ldots;x_l)=\frac{x_l-x_k}{f^{-}(x_{k+1};\ldots;x_l)-f^{-}(x_k;\ldots;x_{l-1})}</tex>
<tex> f^{-}(x_k;\ldots;x_l)=\frac{x_l-x_k}{f^{-}(x_{k+1};\ldots;x_l)-f^{-}(x_k;\ldots;x_{l-1})}</tex>
Строка 26: Строка 26:
==Погрешность вычислений==
==Погрешность вычислений==
-
 
==Пример использования==
==Пример использования==
-
 
==Литературы==
==Литературы==
# ''Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков.'' Численные методы. Изд-во "Лаборатория базовых знаний". 2003.
# ''Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков.'' Численные методы. Изд-во "Лаборатория базовых знаний". 2003.
 +
 +
== См. также ==
 +
* [[Практикум ММП ВМК, 4й курс, осень 2008]]
 +
 +
[[Категория:Учебные задачи]]

Версия 19:08, 19 октября 2008

Содержание

Введение

Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто рациональное), которое соответствует отношению двух многочленов.

R(x)=\frac{a_0+a_1x+\dots+a_px^p}{b_0+b_1x+\dots+b_px^p}, p+q+1=n

Коэффициенты a_i, b_i можно найти из совокупности соотношений R(x_j)=y_j, j=1,\ldots,n, которые можно записать в виде

 \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\ldots, n

Таким образом получаем систему n линейных алгебраических уравнений относительно n+1 неизвестных. Функция R(x) может быть записана в явном виде в случаях, когда n нечетное и p=q, и когда n четное и p-q=1. Для этого следует вычислить обратные разделенные разности, определяемые условиями

f^{-}(x_k;x_l)=\frac{x_k-x_l}{f(x_k)-f(x_l)}

и рекуррентным соотношением

 f^{-}(x_k;\ldots;x_l)=\frac{x_l-x_k}{f^{-}(x_{k+1};\ldots;x_l)-f^{-}(x_k;\ldots;x_{l-1})}

после чего интерполирующая рациональная функция записывается в виде цепной дроби

 f^{-}(x_k;\ldots;x_n)=f(x_1)+\frac{x-x_1}{f^{-}(x_1;x_2)+\frac{x-x_2} {f^{-}(x_1;x_2;x_3)+\dots+ \frac{x-x_{n-1}}{f^{-}(x_k;\ldots;x_{n}) } } }

Дробно-рациональное интерполирование при правильном выборе узлов целесообразно использовать для функций с нерегулярным характером поведения.

Погрешность вычислений

Пример использования

Литературы

  1. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. Изд-во "Лаборатория базовых знаний". 2003.

См. также

Личные инструменты