Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание | 
Постановка задачи
Задана выборка  откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию 
.
Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров модели от дисперсии случайной переменной и выбросов в выборке.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
Дисперсия :
 
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где  — коэффициент детерминации j-го признака относительно остальных:
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение  велико, то 
 — мало, то есть 
 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Методика Belsley, Kuh, и Welsch (BKW)
Диагностика Коллинеарности BKW основана на двух элементах, относящихся к  матрице данных 
 использующейся в линейной регрессии 
 : индексы обусловленности(the scaled condition indexes) и дисперсионные соотношения(the  variance-decomposition proportions). Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы 
: 
, где 
 и 
 - диогональная с неотрицательными элементами 
 называющимися сингулярными значениями 
. Индексы обусловленности это:
, 
 
 для всех 
. Большое значение 
 указывает на зависимость близкую к линейной между признаками и чем больше 
 тем сильнее зависимость. Дисперсионные соотношения разложения проистекают из того факта, что используя SVD ковариационная матрица метода наименьших квадратов 
 может записана как:
  (3)
где  это дисперсия возмущения 
. Таким образом дисперсия k-го регрессионного коэффициента 
 это k-й диогональный элемент (3): 
       (4)
где  - сингулярные значения 
 и 
. 
Определим 
-е дисперсионное соотношение как долю дисперсии k-го регрессионного коэффициента связанная с j-м компонентом его разложения (4). Доля считается как:
 
, 
, 
 
Дисперсионное соотношение: 
 
, 
 
 
Данные удобно представить в виде таблицы: 
| Condition index | ||||
|---|---|---|---|---|
|   |   |   | ... |   | 
|   |   | ... | ... |   | 
| . | . | . | . | |
| . | . | . | . | |
| . | . | . | . | |
|   |   |   | ... |   | 
Перед использованием BKW необходимо отмасштабировать матрицу . Стандартно применяется приведение столбцов к одинаковой длинне(норму). Будем рассматривать отмасштабированные индексы обусловленности 
 :
 
, 
Алгоритм BKW
1. Создание матрицы данных .
2. Приведение столбцов матрицы к одинаковой длинне.
3. Вычисление индексов обусловленности и дисперсионных долей.
4. Определение зависимых признаков.
Зависимыми выбираются признаки у которых индекс обусловленности больше какого либо выбранного значения.
Относительная сила зависимости определяется положение значения индеса обусловленности в прогресии 1, 3, 10, 30, 100, 300, 1000 итд.
5. Определение признаков участвующих в зависимости. 
2 случая :
1) Только 1 достаточно большой индекс обусловленности - тогда возможно определение участвующих в зависимости признаков из дисперсионных долей: признак считается вовлеченным если его дисперсионная доля связанная с зависимым признаком превышает выбранный порог  (обычно 0.25).
2) Есть несколько зависимых признаков. В этом случае вовлеченность признака в зависимость определяется по сумме его дисперсионных долей отвечающих большим значениям индекса обусловленности - когда сумма превышает порог  признак участвует как минимум в одной линейной зависимости.
Вычислительный эксперимент
Исходный код
- Cкачать листинги алгоритмов можно здесь [1]
 
Смотри также
- Фактор инфляции дисперсии
 - Мультиколлинеарность
 - Метод наименьших квадратов
 - Линейная регрессия (пример)
 - Сингулярное разложение
 
Литература
- Gianfranco Galmacci, Collinearity Detection in Linear Regression. M: 1996 Kluwer Academic Publishers.
 - D. A. BELSLEY, A Guide to Using the Collinearity Diagnostics. M: 1991 Kluwer Academic Publishers.
 - К. В. Воронцов, Лекции по линейным алгоритмам классификации и регрессии
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

