Кривая ошибок
Материал из MachineLearning.
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 
Кривая ошибок или ROC-кривая – часто применяемый способ представления результатов двухклассовой (бинарной) классификации.
Кривая ошибок в задаче классификации
Рассмотрим задачу логистической регрессии в случае двух классов. Традиционно, один из этих классов будем называть классом «с положительными исходами», другой - «с отрицательными исходами» и обозначим множество классов через . Рассмотрим линейный классификатор для указанной задачи: 
. 
Параметр  полагается равным 
, где 
 – штраф за ошибку на объекте класса 
, 
. Эти параметры выбираются из эмперических соображений и зависят от задачи.
Нетрудно заметить, что в задаче существенны не сами параметры , а их отношение: 
. Поэтому при решении задачи логично использовать функционал, инвариантный относительно данного отношения.
Рассмотрим два следующих функционала:
1. False Positive Rate ()– доля объектов выборки 
 ложно положительно классификацированных алгоритмом 
. 
2. True Positive Rate () – доля правильно положительно классифицированных объектов. 
ROC-кривая показывает зависимость количества верно классифицированных положительных объектов (по оси Y) от количества неверно классифицированных отрицательных объектов (по оси X).

