Метод Белсли
Материал из MachineLearning.
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание | 
Анализ коллинеарности
Линейная регрессионная модель: 
где  - n-мерный ветор ответа(зависимой переменной), 
 - n x p (n>p) матрица признаков 
 - p-мерный вектор неизвестных коэффициентов, 
 - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей 
, где 
 это n x n единичная матрица, а 
. Будем считать что 
 имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения 
 определяется как: 
Где  - n x p ортогональная матрица, 
 - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями 
, 
 - p x p ортогональная матрица, чьи колонки это собственные вектора 
. Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.

