Алгебра над алгоритмами и эвристический поиск закономерностей
Материал из MachineLearning.
Руководитель спецсеминара: д.ф.-м.н., профессор Дьяконов Александр Геннадьевич
 
  | 
Работа на спецсеминаре
В рамках работы на спецсеминаре есть два направления исследования:
- Теоретическое. Проводится в рамках алгебраического подхода к решению задач распознавания. Суть подхода: на алгоритмах, которые решают задачи обработки и анализа данных, специальным образом вводятся алгебраические операции. Например, можно складывать алгоритмы (получается опять алгоритм), умножать и т. д. Среди получаемых алгебраических выражений над «естественными» алгоритмами есть высокоэффективные алгоритмы. На спецсеминаре рассматриваются вопросы: как их строить, анализировать, реализовывать на ЭВМ и т. д. и т. п. Здесь же возникают задачи современной теории интерполяции: построения функций специального вида, заданных частично. Можно заниматься дискретным направлением: решать подобные задачи для функций, принимающих значения 0 и 1. Данное направление представляет особую ценность студентам, которые хотят получить самостоятельные результаты в науке и продолжить обучение в аспирантуре.
 
- Прикладное. Решаются реальные прикладные задачи анализа данных (data mining). Например, построение рекомендательных систем, прогнозирование свойств динамических графов (в том числе и графов социальных сетей), прогнозирование поведения потребителей, анализ метаданных, классификация сигналов головного мозга, классификация сигналов-показаний работы механизмов, настройка спам-фильтров, автоматическая рубрикация текстов, прогнозирование финансовых временных рядов. От студентов требуется желание глубоко понять задачу (данные и скрытые в них закономерности), умение быстро осваивать новые методы (в незнакомой области), хорошо программировать, выдвигать гипотезы и фантазировать (последнее очень важно).
 
|   |  Задание студентам: продолжить оформление этой странички
  | 
Заседания 2012—2013 уч. года (осенний семестр)
| Число | Докладчик | Доклад | 
|---|---|---|
| 16.11.12 | Харациди Олег (317) | Доклад «Методы выявления оскорблений в текстовых сообщениях» | 
| 16.11.12 | Фонарев Александр (417) | Доклад «Размышления об автоматическом подборе ядра сглаживания» | 
| 09.11.12 | Кондрашкин Дмитрий (417) | Доклад «Успешные методы ранговой регрессии» | 
| 09.11.12 | Рыжков Александр (317) | Доклад «Алгоритмы анализа и обработки цифровых сигналов» | 
| 09.11.12 | Дьяконов Александр (рук. сем.) | Организационные дела, планы работы на спецсеминаре. | 
|   | Очередное заседание спецсема состоится 16 ноября 2012 года в 18:00. | 
См. архив:
- Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2011-2012 уч. года (весенний семестр).
 - Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2011-2012 уч. года (осенний семестр).
 - Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2010-2011 уч. года (весенний семестр).
 
Наши успехи
| Кто | Что | 
|---|---|
| Кондрашкин Дмитрий | 
 Победа в конкурсе курсовых работ 2012 года.  | 
| Кириллов Александр, Фигурнов Михаил | Второе место на конкурсе Интернет-математика «Relevance Prediction Challenge» (лучший результат среди российских участников). Статья с отчётом об используемых методах. | 
Научная работа — задания
| Участник | Задание (каждый сам заполняет свою ячейку) | Комментарий | 
|---|---|---|
| Бобрик Ксения (517) | Анализ данных в задаче разработки и тестирования торговых стратегий | |
| Ермушева Александра (517) | ||
| Кириллов Александр (517) | ДНФ специального вида для функций с малым количеством нулей | |
| Фигурнов Михаил (517) |  Обобщение метрического критерия k-сингулярности на метрики из разрезного конуса  | |
| Кондрашкин Дмитрий (417) | ||
| Нижибицкий Евгений (417) | Доклад по анализу поискового поведения пользователей | |
| Остапец Андрей (417) | Доклад с обзором интересных подходов победителей конкурсов по анализу данных | |
| Фонарёв Александр (417) | Поиск ядер сглаживания. Доклад про виды решающих деревьев | |
| Рыжков Александр (317) | Алгоритмы анализа и обработки цифровых аудио сигналов | |
| Харациди Олег (317) | Методы выявления оскорбительных текстовых сообщений на форуме | 
Участники спецсеминара
| Год выпуска | Участники: | 
|---|---|
| 2014 | 
 Кондрашкин Дмитрий 
 
 
 
  | 
| 2013 | 
 Бобрик Ксения 
 Ермушева Александра 
 Кириллов Александр 
 Фигурнов Михаил 
  | 
Выпускники спецсеминара
| Год выпуска | Выпускники: | 
|---|---|
| Аспирант, 2010 | 
 Карпович Павел 
 Диссертация: «K-сингулярные системы точек в алгебраическом подходе к распознаванию образов» (2010, успешно защищена 18.02.2011 по специальности 01.01.09)  | 
| 2012 | 
  | 
| 2010 | 
 Ахламченкова Ольга 
 Токарева (Одинокова) Евгения 
  | 
| 2009 | 
 Власова Юлия 
 Логинов Вячеслав 
 Фёдорова Валентина 
 Чучвара Алексндра (бакалавр) 
  | 
| 2008 | 
 Ломова Дарья 
 Вершкова Ирина 
  | 
| 2007 | 
 Кнорре Анна 
 Карпович Павел 
 Сиваченко Евгений 
  | 
| 2006 | 
 Ховратович (Курятникова) Татьяна 
 Мошин Николай 
  | 
| 2005 | 
 Каменева Наталия 
 Силкин Леонид 
  | 
Некоторые решаемые прикладные задачи
- Прогнозирование временных рядов По характеристикам процесса в прошлом предсказать поведение в будущем. Знание о прошлом может быть неполным или ошибочным. Типичный пример: прогнозирование денежных сумм, которые будут сниматься с банкомата в течение следующей недели.
 - Классификация технических сигналов и сигналов головного мозга По описанию изменения некоторой характеристики процесса необходимо определить её класс. Например, по электрокортикограмме определить ментальное состояние человека. При этом обучающая выборка (данные, которые у нас есть) была собрана достаточно давно, а тестирование алгоритма будет проводиться потом (при изменённых внешних условиях, а следовательно, при изменённых характеристиках данных).
 - Фильтрация спама Настроить спам-фильтр на некотором универсальном обучающем множестве (данных спам-ловушек) так, чтобы он хорошо работал на компьютере конкретного пользователя (без дополнительной донастройки).
 - Иерархическая классификация текстов Написать алгоритм автоматической категоризации документов. Например, новостные рассылки необходимо распределить по каталогам «спорт/футбол», «спорт/биатлон», «музыка/концерты», «музыка/рок/исполнители» и т. д.
 - Ранжирование документов на основе обучающего множества Написать алгоритм, который оценивает релевантность документа поисковому запросу. Для фиксированного запроса упорядочить документы (используя их признаковые описания) так, чтобы порядок отражал «адекватность» запроса.
 - Прогноз связности графа социальной сети Предсказать изменения динамического графа социальной сети, в частности, появление новых рёбер.
 - Прогнозирование успешности грантов и проектов По описанию заявки оценить перспективность выполнения данного проекта.
 - Разработка рекомендательного алгоритма, который делает актуальные предложения купить какой-то товар, воспользоваться услугой или прочитать материал.
 - Предсказывание визитов покупателей и сумм покупок для сети супермаркетов Разработка алгоритма, который предсказывает дату первого визита и сумму покупки каждого клиента.
 - Оценка фотографий по метаданным Прогноз «интересности» фото-материалов на основе анализа названия, описания, GPS-координат съёмки и т.п.
 - Задача кредитного скоринга Прогнозирование надёжности клиента банка по обязательствам выплаты процентов кредита.
 

