Глубинное обучение (курс лекций)/2019

Материал из MachineLearning.

Перейти к: навигация, поиск

This is an introductory course on deep learning models and their application for solving different problems of image and text analysis.

Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.

The timetable in Autumn 2019: Mondays, lectures begin at 10-30, seminars begin at 12-15, room 526b.

Rules and grades

We have several practical assignments during the course. For each assignment, a student may get up to 10 points + possibly bonus points. A student is allowed to upload his fulfilled assignment during one week after deadline with grade reduction of 0.2 points per day. All assignments are prepared in English.

Also each student may give a small 10-minutes talk in English on some recent DL paper. For this talk a student may get up to 5 points.

The total grade for the course is calculated as follows: Round-up (0.3*<Exam_grade> + 0.7*<Semester_grade>).

Practical assignments

Practical assignments are provided on course page in anytask.org. Invite code: ?????

Lectures

Date No. Topic Materials
02 Sep. 2019 1 Introduction. Fully-connected networks. Automatic differentiation.

Seminars

Date No. Topic Need laptops Materials
9 Sep. 2019 1 Introduction to Pytorch Yes

Arxiv

2017

2016

Личные инструменты