Критерий Бройша-Пагана

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (ссылки)
м
Строка 1: Строка 1:
 +
'''Критерий Бройша-Пагана''' (также ''Бреуша-Пагана'', англ. ''Breusch-Pagan test'') — один из статистических тестов для проверки наличия гетероскедастичности (то есть непостоянной дисперсии) случайных ошибок модели [[Регрессионный анализ|линейной регрессии]]. Применяется, если есть основания полагать, что дисперсия ошибок <tex>\sigma_t</tex> может зависеть от некоторой совокупности наблюдаемых переменных:
 +
::<tex>\sigma_t^2 = z_t^T \gamma, \;t = 1,\dots,n,</tex>
 +
где <tex>z_t = (1,z_{2t},\dots,z_{pt})^T.</tex>
 +
==Определение==
==Определение==
-
 
-
'''Критерий Бройша-Пагана''' (также ''Бреуша-Пагана'', англ. ''Breusch-Pagan test'') - один из статистических тестов для проверки наличия гетероскедастичности (то есть непостоянной дисперсии) случайных ошибок модели линейной регрессии. Применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных. В данном случае проверяется линейная зависимость дисперсии случайных ошибок <tex> \sigma_t </tex> от наблюдаемых переменных:
 
-
 
-
::<tex>\sigma_t^2 = z_t^T \gamma, \quad t = 1,\dots,n</tex>, где <tex>z_t = (1,z_{2t},\dots,z_{pt})^T</tex>.
 
-
 
Формулировки проверяемой и альтернативной гипотез выглядят следующим образом:
Формулировки проверяемой и альтернативной гипотез выглядят следующим образом:
Строка 11: Строка 10:
::<tex>H_1: \quad H_0</tex> неверна.
::<tex>H_1: \quad H_0</tex> неверна.
-
==Процедура теста==
+
Статистика критерия может быть получена на основе метода множителей Лагранжа и имеет следующий вид:
-
Следуя методу множителей Лагранжа, получаем следующий вид статистики теста:
+
::<tex>LM=\left (\frac{\partial l}{\partial\theta} \right )'\left (-E\left [\frac{\partial^2 l}{\partial\theta \partial\theta'} \right ] \right )^{-1}\left(\frac{\partial l}{\partial\theta} \right )</tex>.
-
:<tex>LM=\left (\frac{\partial l}{\partial\theta} \right )'\left (-E\left [\frac{\partial^2 l}{\partial\theta \partial\theta'} \right ] \right )^{-1}\left(\frac{\partial l}{\partial\theta} \right )</tex>.
+
Вычисление статистики сводится к следующей процедуре<ref name="heij">C. Heij, P. de Boer (2004). [https://akela.mendelu.cz/~xhavir3/ekm/Heij.pdf "Econometric Methods with Applications in Business and Economics"]. Oxford University Press, pp. 344–345.</ref>.
 +
* ''Шаг 1'': Исходная модель <tex> y = X\beta+\varepsilon</tex> оценивается обычным [[Метод наименьших квадратов|методом наименьших квадратов]], вычисляются остатки <tex>\varepsilon_t</tex>.
 +
* ''Шаг 2'': Дисперсия ошибки модели (в предположении её гомоскедастичности) оценивается как <tex>\hat{\sigma}^2 = \frac{1}{n} RSS</tex>.
 +
* ''Шаг 3'': Вычисляются стандартизированные остатки <tex>\frac{\varepsilon^2}{\hat{\sigma}^2} </tex>.
 +
* ''Шаг 4'': Строится дополнительная регрессия квадратов стандартизированных ошибок на исходные наблюдаемые переменные:
 +
::<tex> \varepsilon_t^2=\gamma_1+\gamma_2z_{2t}+\dots+\gamma_pz_{pt}+\eta_t </tex>.
 +
* ''Шаг 5'': <tex> LM=n R^{2}</tex>, где <tex>R^{2}</tex> — [[коэффициент детерминации]] построенной на предыдущем шаге регрессии.
-
В учебнике [C. Heij, P. de Boer, 2004] говорится о том что подсчет статистики сводится к следующей процедуре:
+
При справедливости нулевой гипотезы о гомоскедастичности остатков статистика критерия имеет распределение хи-квадрат с <tex>p-1</tex> степенями свободы.
-
 
+
-
* ''Шаг 1'': Исходная модель <tex> y = X\beta+\varepsilon</tex> оценивается обычным МНК, вычисляются остатки <tex>\varepsilon_t</tex>;
+
-
* ''Шаг 2'': Вычисление оценки дисперсии остатков (в предположении их гомоскедастичности):
+
-
:<tex>\hat{\sigma}^2 = \frac{1}{n} RSS</tex>;
+
-
* ''Шаг 3'': Вычисление стандартизированных остатков <tex>\frac{\varepsilon^2}{\hat{\sigma}^2} </tex>;
+
-
* ''Шаг 4'': Построение дополнительной регрессии квадратов стандартизированных ошибок на исходные наблюдаемые переменные
+
-
:<tex> \varepsilon_t^2=\gamma_1+\gamma_2z_{2t}+\dots+\gamma_pz_{pt}+\eta_t </tex>;
+
-
* ''Шаг 5'': <tex> LM=n R^{2}</tex>, где <tex>R^{2}</tex> - коэффициент детерминации построенной на предыдущем шаге регрессии.
+
-
 
+
-
 
+
-
В работе [Breush, Pagan, 1979] установлено, что при справедливости нулевой гипотезы о гомоскедастичности остатков статистика теста имеет распределение хи-квадрат с p-1 степенями свободы <tex> LM \sim \chi^2 \left (p - 1 \right )</tex>.
+
==Пример==
==Пример==
Строка 62: Строка 56:
== Ссылки ==
== Ссылки ==
-
* Breusch T.S., Pagan A.R. (1979). [https://www.aae.wisc.edu/aae637/handouts/breusch_pagan_hetero_test_article.pdf "Simple test for heteroscedasticity and random coefficient variation"].
+
* Breusch T.S., Pagan A.R. (1979). [https://www.aae.wisc.edu/aae637/handouts/breusch_pagan_hetero_test_article.pdf "Simple test for heteroscedasticity and random coefficient variation"]. Econometrica, 47(5), 1287-1294.
* [http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test EnWiki: Breusch–Pagan test]
* [http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test EnWiki: Breusch–Pagan test]
-
* C. Heij, P. de Boer (2004). [https://akela.mendelu.cz/~xhavir3/ekm/Heij.pdf "Econometric Methods with Applications in Business and Economics"]. Oxford University Press, pp. 344–345.
 
* Магнус Я.Р., Катышев П.К., Пересецкий А.А. (2007) [http://math.isu.ru/ru/chairs/me/files/books/magnus.pdf "Эконометрика. Начальный курс"]. М.:Дело, стр. 179-183.
* Магнус Я.Р., Катышев П.К., Пересецкий А.А. (2007) [http://math.isu.ru/ru/chairs/me/files/books/magnus.pdf "Эконометрика. Начальный курс"]. М.:Дело, стр. 179-183.
* [http://www.youtube.com/watch?v=wzLADO24CDk YouTube: The Breusch Pagan test for heteroscedasticity]
* [http://www.youtube.com/watch?v=wzLADO24CDk YouTube: The Breusch Pagan test for heteroscedasticity]
 +
 +
== Примечания ==
 +
<references />
 +
 +
[[Категория:Линейная регрессия]]
 +
[[Категория:Регрессионный анализ]]

Версия 22:16, 27 декабря 2013

Критерий Бройша-Пагана (также Бреуша-Пагана, англ. Breusch-Pagan test) — один из статистических тестов для проверки наличия гетероскедастичности (то есть непостоянной дисперсии) случайных ошибок модели линейной регрессии. Применяется, если есть основания полагать, что дисперсия ошибок \sigma_t может зависеть от некоторой совокупности наблюдаемых переменных:

\sigma_t^2 = z_t^T \gamma, \;t = 1,\dots,n,

где z_t = (1,z_{2t},\dots,z_{pt})^T.

Содержание

Определение

Формулировки проверяемой и альтернативной гипотез выглядят следующим образом:

H_0: \quad \gamma_2 = \ldots = \gamma_p = 0 \quad \Leftrightarrow \quad \sigma_1^2 = \ldots = \sigma_n^2 \quad \Leftrightarrow  остатки гомоскедастичны;
H_1: \quad H_0 неверна.

Статистика критерия может быть получена на основе метода множителей Лагранжа и имеет следующий вид:

LM=\left (\frac{\partial l}{\partial\theta} \right )'\left (-E\left [\frac{\partial^2 l}{\partial\theta \partial\theta'} \right ] \right )^{-1}\left(\frac{\partial l}{\partial\theta} \right ).

Вычисление статистики сводится к следующей процедуре[1].

  • Шаг 1: Исходная модель  y = X\beta+\varepsilon оценивается обычным методом наименьших квадратов, вычисляются остатки \varepsilon_t.
  • Шаг 2: Дисперсия ошибки модели (в предположении её гомоскедастичности) оценивается как \hat{\sigma}^2 = \frac{1}{n} RSS.
  • Шаг 3: Вычисляются стандартизированные остатки \frac{\varepsilon^2}{\hat{\sigma}^2} .
  • Шаг 4: Строится дополнительная регрессия квадратов стандартизированных ошибок на исходные наблюдаемые переменные:
 \varepsilon_t^2=\gamma_1+\gamma_2z_{2t}+\dots+\gamma_pz_{pt}+\eta_t .

При справедливости нулевой гипотезы о гомоскедастичности остатков статистика критерия имеет распределение хи-квадрат с p-1 степенями свободы.

Пример

Рассмотрим пример с использованием системы R:

> ## моделируем наблюдаемые переменные
> x <- rep(c(-1,1), 50)
> ## генерируем гетероскедастичные ошибки
> err1 <- rnorm(100, sd=rep(c(1,2), 50))
> ## генерируем гомоскедастичные ошибки
> err2 <- rnorm(100)
> ## генерируем отклик
> y1 <- 1 + x + err1
> y2 <- 1 + x + err2
> ## проводим тест Бройша-Пагана
> bptest(y1 ~ x)$p.value
          BP 
0.0007141008  
> bptest(y2 ~ x)$p.value
       BP
0.9464273 

Реализации

Ссылки

Примечания

Личные инструменты