Международный стандарт представления чисел с плавающей точкой в ЭВМ

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Числа с плавающей точкой)
(Машинный эпсилон)
Строка 53: Строка 53:
Худшему случаю округления соответствует абсолютная погрещность, равная
Худшему случаю округления соответствует абсолютная погрещность, равная
<tex>$0.00 \dots 0\beta'\times\beta^e$</tex>, где <tex>\beta'=\beta/2</tex>. В мантиссе результата округления <tex>p</tex> позиций , в мантиссе абсолютной погрешности <tex>p+1</tex> позиция.
<tex>$0.00 \dots 0\beta'\times\beta^e$</tex>, где <tex>\beta'=\beta/2</tex>. В мантиссе результата округления <tex>p</tex> позиций , в мантиссе абсолютной погрешности <tex>p+1</tex> позиция.
 +
 +
При попытке написать неравенство для относительной погрешности, соответствующей упомянутой выше абсолютной погрешности, несложно получить, что
 +
 +
::<tex>\left(1/2\right)\beta^{-p}\leq\delta\leq\left(\beta/2\right)\beta^{-p}</tex>.
 +
 +
Величину <tex>\eps=\left(\beta/2\right)\beta^{-p}</tex> принято называть ''машинным эпсилоном'' (''machine epsilon'').
 +
Таким образом можно утверждать, что при округлении дробного числа ближайшим к нему числом с плавающей точкой относительная погрешность округления не превосходит машинного эпсилона.
 +
 +
''Существует и другое определение. Машинный эпсилон можно определить как минимальное положительное число, которое будучи прибавлено к единице даёт результат отличный от единицы. Читателю предлагается проверить эквивалентность этих определений самостоятельно.''
== Стандарт IEEE ==
== Стандарт IEEE ==

Версия 09:09, 19 октября 2008

Содержание

Введение

Практически любой язык программирования даёт возможность использовать в вычислениях дробные числа. Когда дело касается программной реализации численных методов или любых других вычислений на ЭВМ, важным вопросом является внутреннее представление чисел, с которым приходится работать программисту. От этого главным образом зависит точность вычислений,а также их скорость.

В этом отчёте будут рассматриваться те аспекты представления чисел в ЭВМ, которые важны пользователям, желающим активно работать с дробными величинами. Вначале будут введены общепринятые понятия для дальнейшего изложения материала. Будет достаточно подробно рассмотрен наиболее часто используемый стандарт IEEE 754. В заключение будут приведены способы доступа к основным параметрам представления дробных чисел в ряде языков программирования (C,C++,Fortran,Pascal).

Числа с плавающей точкой

Числа с плавающей точкой - общепринятая форма представления дробных чисел в ЭВМ. Основными параметрами такой формы представления является основание степени \beta (base) и точность p (precision). При этом всегда требуется, чтобы основание степени было целым чётным числом. Если $\beta=10$ и $p=3$, то число 0.1 представляется в виде $1.00\times 10^{-1}$. Однако, очевидно, что при определённых параметрах некоторые числа не удастся представить точно. Например, при $\beta=2$ и $p=24$ то же самое число 0.1 представляется приблизительно в виде 1.10011001100110011001101\times 2^{-4} (поскольку в бинарном представлении число 0.1 имеет бесконечный вид).

В общем случае при заданных параметрах запись вида $d_0.d_1d_2 \dots d_{p-1}\times\beta^e$ представляет число

$\pm\left(d_0+d_1\beta^{-1}+d_2\beta^{-2}\dots+d_{p-1}\beta^{p-1}\right)\beta^e,\ ( 0\leq d_i<\beta )$

При этом d_0.d_1d_2 \dots d_{p-1} называется мантиссой числа и состоит из p позиций. В дальнейшем под числом с плавающей точкой мы будем понимать дробные числа точно представимые в смысле данной формы.

Существуют ещё два важных параметра — максимальный и минимальный показатели степени $e_{max}$ и e_{min}. Таким образом, при фиксированных параметрах мы можем представить $2\left(e_{max}-e_{min}+1\right)\beta^p$ разных чисел с учётом знака.

Здесь возникает проблема - что делать с числами, не представимыми точно. Чаще всего такая ситуация возникает при попытке представить числа, имеющие слишком длинное или вообще бесконечное представление (пример с 0.1). В этом случае нужное нам число лежит где-то между двумя числами с плавающей точкой и будет представляться одним из них. Реже встречается попытка использовать числа, меньшие чем 1.0\times\beta^{e_{min}}, или большие чем \beta.0\times\beta^{e_{max}}. Подробнее об этих случаях речь пойдёт в разделе "Стандарт IEEE".

Введём ещё одну договорённость. Пока что представление чисел с плавающей точкой неуникально. Например, при $\beta=10$ и $p=3$ число 0.1 можно представить как 0.01\times 10^{1} и как 1.00\times 10^{-1}. Представление числа, в старшей позиции которого стоит цифра, отличная от нуля \left(d_0\neq 0\right), мы будем называть нормализованным. Использование нормализованных форм решает проблему неединственности представления чисел с плавающей точкой. (Однако, при такой договорённости возникает интересный вопрос — как представлять 0?)

Машинный эпсилон

Как известно, существует 2 вида погрешностей вычисления — абсолютная и относительная (Ошибки вычислений). Под относительной погреностью понимается отношение

\delta(\tilde a)=\frac{|\tilde a-a|}{a},

где \tilde a – значение, полученное при округлении, а a - точное значение вычислений.

Представим, что результатом округления действительного числа стало число $d.dd\dots d\times\beta^e$. Худшему случаю округления соответствует абсолютная погрещность, равная $0.00 \dots 0\beta'\times\beta^e$, где \beta'=\beta/2. В мантиссе результата округления p позиций , в мантиссе абсолютной погрешности p+1 позиция.

При попытке написать неравенство для относительной погрешности, соответствующей упомянутой выше абсолютной погрешности, несложно получить, что

\left(1/2\right)\beta^{-p}\leq\delta\leq\left(\beta/2\right)\beta^{-p}.

Величину \eps=\left(\beta/2\right)\beta^{-p} принято называть машинным эпсилоном (machine epsilon). Таким образом можно утверждать, что при округлении дробного числа ближайшим к нему числом с плавающей точкой относительная погрешность округления не превосходит машинного эпсилона.

Существует и другое определение. Машинный эпсилон можно определить как минимальное положительное число, которое будучи прибавлено к единице даёт результат отличный от единицы. Читателю предлагается проверить эквивалентность этих определений самостоятельно.

Стандарт IEEE

Рекомендации программисту

Заключение

Список литературы

  • David Goldberg.  What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing Surveys, Vol. 23, No. 1 (March 1991), pages 5--48.


Личные инструменты