Прогнозирование объемов продаж новых товаров (отчет)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Математическое описание)
(Математическое описание)
Строка 90: Строка 90:
<center>
<center>
<tex> \sum_{b}|y_{i}-b| </tex>
<tex> \sum_{b}|y_{i}-b| </tex>
 +
</center>
 +
 +
 +
Аналог линейной модели для Θ-ого квантиля определяется таким же образом.То есть <tex>/hat(b) </tex> , оценка для b в соотношении (1) — называемом Θ-ой квантильной регрессией — решает задачу
 +
 +
 +
 +
<center>
 +
<tex> \min_{b}</tex> (1\n)<tex>(\sum_{i:y_{i}>=x'_{i}b}tetta|y_{i}-x'_{i}b|+ \sum_{i:y_{i}<x'_{i}b}(1-tetta)|y_{i}-x'_{i}b| ) </tex>
</center>
</center>

Версия 18:01, 9 марта 2010

Введение в проект

Описание проекта

Цель проекта

Цель проекта - прогнозирование еженедельных продаж новых товаров.

Обоснование проекта

Результаты проекта могут быть использованы для планирования объёмов продаж новых товаров.

Описание данных

Дано: товарный классификатор (иерархия товарных групп); региональный классификатор (иерархия магазинов и регионов); товародвижения (продажи, поставки, остатки и пр., праздники и промо-акции).

Критерии качества

Продажи прогнозируется по каждому товару раздельно. Прогнозирование объёмов продаж на неделю основывается на предыстории продаж за фиксированное число дней. Это число дней регулируется переменной stp (количество шагов - количество дней, на которых основывается прогноз). Критерием качества служит сумма модулей отклонения прогноза от реальной величины покупок по дням.

Требования к проекту

Сумма модулей отклонения в алгоритме проекта должна быль меньше, чем для скользящего среднего за 30 дней.

Выполнимость проекта

Прогнозирование объёмов продаж новых товаров производится в будние дни (время праздников и промо-акций в проекте не рассматривается).

Используемые методы

Прогнозирование производится методом квантильной регрессии для различных квантилей Θ (0.25; 0.4; 0.5; 0.6; 0.75). При прогнозировании можно менять параметр stp.

Постановка задачи

На основе данных продаж за фиксированное число дней (параметр stp) прогнозируются продажи новых товаров на 7 дней вперёд с наибольшей вероятностью (Θ=0.5) и вероятностями 25%, 40%. Будем использовать функционал качества

Q(y, \hat{y}) = \sum_{i}|y_{i}-\hat{y}_{i}|.

где y, \hat{y} соответственно известное значение и прогноз.

x_{i}(t) - временной ряд для каждого из товаров, y_{i}(t) - значение продаж для каждого такого ряда.

Описание алгоритмов

В проекте использовался метод квантильной регрессии.

Обзор литературы

Для прогнозирования объёмов продаж новых товаров в литературе описываются различные методы. Метод квантильной регрессии впервые применён в [1], прогнозирование с помощью которого наиболее точно и позволяет прогнозировать c разными вероятностями [2]. Квантильная регрессия с параметром 0.5 является линейной, которая рассматриватся в [4].

Базовые предположения

Предполагается, что наилучший прогноз будет получен с помощью квантильной регрессии с параметром Θ=0.5. Прогноз требуется не более чем на 7 дней.

Математическое описание

Общая модель квантильной регрессии

Пусть (x_{i},y_{i}), i=1,...,n - некоторые переменные, где x_{i} - K×1 вектор независимых переменных в уравнении регрессии. Допускается, что


P(y_{i}τ | x_{i})=F_{u}(τ-x'_{i} b| x_{i}), i=1,...,n.

Это соотношение — в другой формулировке — может быть переписано как

y_{i}=x'_{i}b+u_{i},  Quant_{i}(y_{i}|x_{i})=x'_{i}b (1)

Где Quant(y_{i} | x_{i}) обозначает условную квантиль y_{i} на векторе регрессора x_{i}. Нужно отметить, что здесь предполагается, что и x_{i}, и y_{i} наблюдаются без ошибки, и что уравнение (1) правильно определено. Такие проблемы, как ошибки измерения и пропущенные переменные здесь не рассматриваются. Если (1) определено некорректно (то есть, не линейно), тогда модель можно рассматривать как лучший линейный прогноз для условной квантили. Если функция F_{u}(⋅) известна, то для оценки b могут использоваться различ- ные подходы. Однако в данной модели распределение остаточного члена u_{i} остается неопределенным. Как показывает соотношение (1), единственным предположением является лишь то, что u_{i} удовлетворяет ограничению на квантиль:


Quant(u | x_{i})=0

Вообще, Θ-ая простая квантиль (0 < Θ < 1) переменной y, скажем μ , является решением следующей задачи:

  \min_{b} (\sum_{i:y_{i}>=b}tetta|y_{i}-b|+ \sum_{i:y_{i}<b}(1-tetta)|y_{i}-b| )

В частности, медиана (Θ=1/2) находится минимизацией суммы модулей:

 \sum_{b}|y_{i}-b|


Аналог линейной модели для Θ-ого квантиля определяется таким же образом.То есть /hat(b) , оценка для b в соотношении (1) — называемом Θ-ой квантильной регрессией — решает задачу


  \min_{b} (1\n)(\sum_{i:y_{i}>=x'_{i}b}tetta|y_{i}-x'_{i}b|+ \sum_{i:y_{i}<x'_{i}b}(1-tetta)|y_{i}-x'_{i}b| )

Личные инструменты