Статистический анализ данных (курс лекций, К.В.Воронцов)/2015, ФУПМ/1

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
м
Строка 12: Строка 12:
* <tex>X^n, \;\; X\sim Ber(p); </tex><br> <tex>H_0\,:\, p=p_0,</tex><br> <tex>H_1\,:\, p\neq p_0;</tex><br> <tex>p=0\,:\,0.01\,:\,0.5, \;\; n=5\,:\,1\,:\,70.</tex>
* <tex>X^n, \;\; X\sim Ber(p); </tex><br> <tex>H_0\,:\, p=p_0,</tex><br> <tex>H_1\,:\, p\neq p_0;</tex><br> <tex>p=0\,:\,0.01\,:\,0.5, \;\; n=5\,:\,1\,:\,70.</tex>
-
::Ахтямов: <tex>p_0=\frac1{2}</tex>, сравнить z-критерии в версиях Вальда и множителей Лагранжа.
+
::Ахтямов: <tex>p_0=0.5</tex>, сравнить z-критерии в версиях Вальда и множителей Лагранжа.
-
 
+
-
<!---
+
-
::Лисяной: <tex>p_0=\frac1{4}</tex>, сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.
+
-
 
+
-
* <tex>X_1^{n_1}, \;\; X_{1} \sim N(\mu_1, \sigma_1^2),</tex><br> <tex>X_2^{n_2}, \;\; X_{2} \sim N(\mu_2, \sigma_2^2);</tex><br><tex>H_0\,:</tex> средние равны, <br><tex>\;H_1\,:</tex> средние не равны;<br><tex>n_1=25, \;\; \mu_1=0, \;\; \sigma_1=1.</tex>
+
-
::Колмаков: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 2, \;\; n_2=5\,:\,1\,:\,70,</tex> сравнить версии t-критерия для равных и неравных дисперсий.
+
-
::Шапулин: <tex>\mu_2=0.5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=5\,:\,1\,:\,70,</tex> сравнить t- и z-критерии для неравных дисперсий.
+
-
::Тюрин: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=50,</tex> сравнить t-критерий для неравных дисперсий и критерий Манна-Уитни-Уилкоксона.
+
-
 
+
-
* <tex>X_1^n, \;\; X_{1} \sim N(0, \sigma_1^2),</tex><br> <tex>X_2^n, \;\; X_{2} \sim N(0, \sigma_2^2);</tex> <br> <tex>H_0\,:\, \mathbb{D}X_{1} = \mathbb{D}X_{2},</tex> <br> <tex>H_1\,:\, \mathbb{D}X_{1} \neq \mathbb{D}X_{2}.</tex>
+
-
::Чистяков: <tex>\sigma_1=1, \;\;\sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=5\,:\,1\,:\,70,</tex> сравнить критерии [[критерий Ансари-Брэдли|Ансари-Брэдли]] и [[критерий Зигеля-Тьюки|Зигеля-Тьюки]].
+
-
::Корольков: <tex>\sigma_1= 0.5\,:\,0.01\,:\,2, \;\;\sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=30,</tex> сравнить критерии [[критерий Фишера|Фишера]] и [[критерий Ансари-Брэдли|Ансари-Брэдли]].
+
-
 
+
-
* <tex>X^n, \;\; X\sim N(\mu,\sigma); </tex><br> <tex>H_0\,:</tex> среднее значение <tex>X</tex> равно нулю,<br> <tex>H_1\,:</tex> среднее значение <tex>X</tex> не равно нулю;<br> <tex>\mu=0\,:\,0.01\,:\,2, \;\; n=5\,:\,1\,:\,70.</tex>
+
-
::Козлов: <tex>\sigma=1,</tex> сравнить критерии знаков и знаковых рангов.
+
-
 
+
-
= Анализ устойчивости критериев к нарушению предположений =
+
-
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
+
-
 
+
-
* Двухвыборочный [[критерий Стьюдента|t-критерий]] для равных дисперсий, нарушение предположения о равенстве дисперсий. <br> <tex>X_1^{n_1}, \;\; X_{1} \sim N(0,1),</tex><br><tex>X_2^{n_2}, \;\; X_{2} \sim N(\mu,\sigma^2);</tex> <br> <tex>H_0\,:\; \mathbb{E}X_{1} = \mathbb{E}X_{2}, </tex> <br> <tex>H_1\,:\; \mathbb{E}X_{1} \neq \mathbb{E}X_{2}.</tex>
+
-
::Хальман: <tex>\mu=1, \;\; \sigma=0.5\,:\,0.01\,:\,2, \;\; n_1=5\,:\,1\,:\,70, \;\; n_2 = 30.</tex>
+
-
 
+
-
* Одновыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о нормальности. <br> <tex>X^n, \;\; X \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot F; </tex> <br> <tex>H_0\,:\; \mathbb{E}X=0</tex> <br> <tex>H_1\,:\; \mathbb{E}X\neq0;</tex> <br><tex>\mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1.</tex> <br>
+
-
::Дойков: <tex>F = C\left(\mu,3\right)</tex>—&nbsp;распределение Коши с коэффициентом сдвига <tex>\mu</tex> и коэффициентом масштаба <tex>3; \;\; n=50.</tex>
+
-
::Славнов: <tex>F = U\left[-5+\mu, 5+\mu\right]</tex>—&nbsp;непрерывное равномерное распределение на <tex>\left[-5+\mu,5+\mu\right]; \;\; n=30.</tex>
+
-
 
+
-
* Одновыборочный критерий хи-квадрат для гипотезы о дисперсии, нарушение предположения о нормальности. <br> <tex>X^n, \;\; X \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot F; </tex> <br> <tex>H_0\,:\; \mathbb{D}X=1</tex> <br> <tex>H_1\,:\; \mathbb{D}X\neq1;</tex> <br><tex>\sigma=0.5\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=50.</tex> <br>
+
-
::Ожерельев: <tex>F = U\left[-\frac{\sigma}{\sqrt{3}}, \frac{\sigma}{\sqrt{3}}\right]</tex> —&nbsp;непрерывное равномерное распределение на <tex>\left[-\frac{\sigma}{\sqrt{3}}, \frac{\sigma}{\sqrt{3}}\right].</tex>
+
-
 
+
-
* [[Критерий Фишера]] для проверки равенства дисперсий, нарушение предположения о нормальности. <br> <tex>X_1^{n_1}, \;\; X_{1} \sim p_1\cdot N(0,\sigma_1^2)+ \left(1-p_1\right)\cdot F_1, </tex> <br> <tex> X_2^{n_2},\;\; X_{2} \sim p_2\cdot N(0,\sigma_2^2)+ \left(1-p_2\right)\cdot F_2; </tex> <br> <tex>H_0\,:\, \mathbb{D}X_{1} = \mathbb{D}X_{2},</tex> <br> <tex>H_1\,:\, \mathbb{D}X_{1} \neq \mathbb{D}X_{2};</tex> <br> <tex>\sigma_1=1, \;\; \sigma_2=0.2\,:\,0.01\,:\,2.</tex> <br>
+
-
::Лукашкина: <tex>F_1 = U\left[-\frac1{\sqrt{3}}, \frac1{\sqrt{3}}\right], \;\; F_2 = U\left[-\frac{\sigma}{\sqrt{3}}, \frac{\sigma}{\sqrt{3}}\right]</tex> —&nbsp;непрерывные равномерные распределения; <tex>p_1=p_2=0\,:\,0.01\,:\,1, \;\; n_1=n_2=50.</tex>
+
-
::Готман: <tex>F_1 = U\left[-\frac1{\sqrt{3}}, \frac1{\sqrt{3}}\right]</tex> —&nbsp;непрерывное равномерное распределение; <tex>p_1=0.7, \;\; p_2 = 1, \;\; n_1=5\,:\,1\,:\,70, \;\; n_2=50.</tex> --->
+
= Ссылки =
= Ссылки =

Версия 14:42, 2 марта 2015

Ниже под обозначением X^n, \;\; X \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot F понимается выборка объёма n из смеси нормального распределения N(\mu,\sigma^2) и распределения F с весами p и 1-p соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из распределения F).

Анализ поведения схожих критериев

Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого.

  •  X_1^{n_1}, \;\; X_1 \sim F_1,
     X_2^{n_2}, \;\; X_2 \sim F_2; <tex> <br> <tex> H_0 \,:\, F_1=F_2,
    H_1\,:\; H_0 неверна.
Лийко: F_1 = U\left[0,1\right], \;\; F_2 = U\left[a,a+1\right] —  непрерывные равномерные распределения; a = 0\,:\,0.02\,:\,3, \;\; n_1=n_2=5\,:\,1\,:\,70. Сравнить критерии Смирнова и Крамера-фон Мизеса (функция cvm.test с параметром type="W2" в пакете dgof).
Ефимова: F_1 = N(0,1), \;\; F_2 = N(\mu,\sigma^2), \;\; \mu = 0\,:\,0.01\,:\,2, \;\; \sigma=0.5\,:\,0.01\,:\,2, \;\; n_1=n_2=30. Сравнить критерии Смирнова и Андерсона (функция cvm.test с параметром type="A2" в пакете dgof).
  • X^n, \;\; X \sim p\cdot N(0,1)+ \left(1-p\right)\cdot F;
     H_0\,:\; X \sim N,
    H_1\,:\; H_0 неверна.
Лукманов: F = C\left(0,1\right)— стандартное распределение Коши; n=20\,:\,1\,:\,100, \;\; p=0\,:\,0.01\,:\,1. Сравнить критерии Шапиро-Уилка и хи-квадрат Пирсона.
  • X^n, \;\; X\sim Ber(p);
    H_0\,:\, p=p_0,
    H_1\,:\, p\neq p_0;
    p=0\,:\,0.01\,:\,0.5, \;\; n=5\,:\,1\,:\,70.
Ахтямов: p_0=0.5, сравнить z-критерии в версиях Вальда и множителей Лагранжа.

Ссылки

Личные инструменты