Тупиковые тесты

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
Строка 26: Строка 26:
===Строение АВО===
===Строение АВО===
-
#<tex>\Omega=\{\omega|\omega \subseteq \{1, \ldots, n\}\}</tex> - ''система опорных множеств'';
+
*<tex>\Omega=\{\omega|\omega \subseteq \{1, \ldots, n\}\}</tex> - ''система опорных множеств'';
-
#Вводится ''функция близости'' для двух объектов по опорному множеству <tex>\omega</tex> :<br />
+
*Вводится ''функция близости'' для двух объектов по опорному множеству <tex>\omega</tex> :<br />
<tex>
<tex>
B_\omega(X, X')=\bigwedge_{s \in \omega}{[\rho_s (X, X') \leq \epsilon_s]}</tex>
B_\omega(X, X')=\bigwedge_{s \in \omega}{[\rho_s (X, X') \leq \epsilon_s]}</tex>
где <tex>\epsilon_s </tex> неотрицательные числа, называемые порогами, <tex>s=1,\ldots ,n </tex>
где <tex>\epsilon_s </tex> неотрицательные числа, называемые порогами, <tex>s=1,\ldots ,n </tex>
-
#Вводится оценка близости объекта к классу <tex>\Gamma_c</tex>
+
*Вводится оценка близости объекта к классу <tex>\Gamma_c</tex>
-
#Вычисление алгоритма проводится по правилу:<br />
+
*Вычисление алгоритма проводится по правилу:<br />
<tex>
<tex>
\alpha_j(I_0, X) =
\alpha_j(I_0, X) =
Строка 46: Строка 46:
===Строение АВО, основанного на тупиковых тестах===
===Строение АВО, основанного на тупиковых тестах===
-
#Вводится система опорных множеств <tex>\Omega</tex>;
+
*Вводится система опорных множеств <tex>\Omega</tex>;
-
#Задается функция близости для двух объектов по опорному множеству <tex>\omega=\{j_1,\ldots, j_r\}</tex>:
+
*Задается функция близости для двух объектов по опорному множеству <tex>\omega=\{j_1,\ldots, j_r\}</tex>:
<tex>
<tex>
B_\omega(X_{i1}, X_{i2})=\bigwedge^{r}_{t=1}{|a_{i1j_t}-a_{i2j_t}| \leq \epsilon_s\]}</tex>. Если <tex>B=0</tex>, объекты не являются близкими по опорному множеству.
B_\omega(X_{i1}, X_{i2})=\bigwedge^{r}_{t=1}{|a_{i1j_t}-a_{i2j_t}| \leq \epsilon_s\]}</tex>. Если <tex>B=0</tex>, объекты не являются близкими по опорному множеству.
-
 
+
==Тупиковые тесты==
'''Тестом''' называется набор столбцов таблицы обучения <tex>T_{nml}</tex> с номерами <tex>j_1,\ldots,\j_r</tex>, если любые два объекта, принадлежащие разным классам <tex>Y_i</tex>, не являются близкими по опорному множеству <tex>\omega =\{j_1,\ldots,\j_r\}</tex>.
'''Тестом''' называется набор столбцов таблицы обучения <tex>T_{nml}</tex> с номерами <tex>j_1,\ldots,\j_r</tex>, если любые два объекта, принадлежащие разным классам <tex>Y_i</tex>, не являются близкими по опорному множеству <tex>\omega =\{j_1,\ldots,\j_r\}</tex>.
-
'''Тупиковым тестом''' называется тест, у которого его собственное подмножество не является таковым.
+
'''Тупиковым тестом''' называется тест, у которого его собственное подмножество не является таковым.
 +
Задача распознавания на основе тупиковых тестов решается следующим образом.
 +
Пусть <tex>\{T\}</tex> - множество тупиковых тестов таблицы <tex>T_{nml}</tex>. По тупиковому тесту<tex>j=(j_1,\ldots,j_k</tex> выделяется подописание для распознаваемого объекта <tex>X=(a_{j_1},\ldots,a_{j_r})</tex>, а затем сравнивается со всеми подописаниями объектов таблицы. Число совпадений с описаниями объектов i-го класса обозначается через <tex>\Gamma_{ji}(T)</tex>.<br />
 +
''Оценка объекта по i-ому классу'' <tex>\Gamma_{ji}(X) = \Gamma_i(X_j)=\frac{1}{m_j-m_{j-1}}\sum_{T \in\{T\}}{\Gamma_{ji}(T)}</tex>.
 +
 
 +
Далее объект относится к тому классу,по которому он получил максимальную оценку, в случае двух максимумов считается, что объект не классифицируется на заданном тесте.<br />
 +
 
 +
Если считать, что не все признаки, описывающие объект, равнозначны, то они снабжаются числовыми весами <tex>p(j)=\frac{\tau_j(n,m)}{\tau(n,m)}</tex>, где <tex>\tau</tex> - число тупиковых тестов в таблице, <tex>\tau_j</tex> -число тупиковых тестов в таблице, содержащих j-ый столбец. Чем больше вес, тем важнее признак в описании объектов множества.
 +
Весами объектов, составляющих таблицу обучения, называется поощрительная величина <tex>\gamma</tex>. В случае совпадения распознаваемого объекта <tex>X</tex> с объектом из таблицы <tex>X_v \in Y_i</tex>, такое совпадение поощряется: <tex>\Gamma_T(X,X_v) = \gamma(X_v)(p(j_1),\ldots,p(j_r))</tex>,
 +
Оценка объекта по i-ому классу задается таким образом
 +
<tex>\Gamma_i(X)=\frac{1}{m_i-m_i-1}\sum_{T\in\{T\}}sum^{m_i}_{m_{i-1}+1}{\Gamma_T(X_v,X)}</tex>.
 +
===Построение тупиковых тестов===
 +
Про

Версия 12:01, 14 февраля 2010

Данная статья является непроверенным учебным заданием.
Студент: Участник:Mordasova
Преподаватель: Участник:Константин Воронцов
Срок: 15 февраля 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Алгоритм вычисления оценки, в котором множество опорных множеств является множеством всех тупиковых тестов, называется тестовым алгоритмом. Первый вариант таких АВО был предложен Ю.И. Журавлевым. АВО совмещают метрические и логические принципы классификации. От метрических алгоритмов АВО наследует принцип оценивания сходства через введение множества метрик \rho_s(x, x'), а от логических принцип поиска конъюнктивных закономерностей, конъюнкции строятся не над бинарными признаками \beta(x), а над бинарными функциями близости вида \beta(x, x') = \[\rho_s(x, x') < \varepsilon_s\]. В этом случае каждой закономерности соответствует не подмножество признаков, а подмножество метрик, называемое опорным множеством. Как правило одного опорного множества недостаточно, поэтому в АВО применяется взвешенное голосование по системе опорных множеств.

Содержание

Описание АВО, основанных на тупиковых тестах

Формулировка задачи

Задача распознавания: Y=\bigcup_{i=1\ldots l}{Y_i}- множество непересекающихся классов объектов.

Первоначальная информация I_0 (обучающая) и описание некоторого объекта I(x), x \in Y.
Объект задается через набор числовых признаков X=(x_1,\ldots,x_n).
Задача распознавания состоит в определении включения заданного объекта x в классы Y_i.

В случае АВО, основанных на тупиковых тестах, начальная информация I_0 задается таблицей:

  • T_{nml}=\parallel a_{ij}\parallel_{m\times n} - таблица признаков объектов в обучающей выборке;
  • I(X_i)=(a_{i1},\ldots,a_{in}) - описание объекта из обучающей выборки;
  • X_{m_{i-1}+1},\ X_{m_{i-1}+2},\ldots,\ X_{m_i}\in Y_i,\ i=1\ldots l,\ m_0=0,\ m_l=m - выражение, определяющее включение объектов в классы;

Алгоритм распознаванияA(I_0,X)=\alpha(X), где \alpha(X) = \alpha_1(I_0,X),\ldots ,\alpha_l(I_0,X).

\alpha_i(X) = 
\begin{cases} 
1,  &  X\in Y_i\\
0, & X \notin Y_i \\
\Delta, & \alpha\ \mathrm{doesn't\ accept\ X}.
\end{cases}

Строение АВО

  • \Omega=\{\omega|\omega \subseteq \{1, \ldots, n\}\} - система опорных множеств;
  • Вводится функция близости для двух объектов по опорному множеству \omega :


B_\omega(X, X')=\bigwedge_{s \in \omega}{[\rho_s (X, X') \leq \epsilon_s]} где \epsilon_s неотрицательные числа, называемые порогами, s=1,\ldots ,n

  • Вводится оценка близости объекта к классу \Gamma_c
  • Вычисление алгоритма проводится по правилу:


\alpha_j(I_0, X) = 
\begin{cases} 
1,  &  \Gamma_j(X)>\Gamma_i(X)+\delta_2;\ i=1,\ldots,l, \ i \neq j;\ \Gamma_j(X)>\delta_1\sum^{l}_{i=1}{\Gamma_j(X)}\\
0, & \mathrm{other\ way}.
\end{cases}
1>\delta_1\leq 1/l,\ \delta_2 \geq 0 - пороги осторожности.

Строение АВО, основанного на тупиковых тестах

  • Вводится система опорных множеств \Omega;
  • Задается функция близости для двух объектов по опорному множеству \omega=\{j_1,\ldots, j_r\}:


B_\omega(X_{i1}, X_{i2})=\bigwedge^{r}_{t=1}{|a_{i1j_t}-a_{i2j_t}| \leq \epsilon_s\]}. Если B=0, объекты не являются близкими по опорному множеству.

Тупиковые тесты

Тестом называется набор столбцов таблицы обучения T_{nml} с номерами j_1,\ldots,\j_r, если любые два объекта, принадлежащие разным классам Y_i, не являются близкими по опорному множеству \omega =\{j_1,\ldots,\j_r\}. Тупиковым тестом называется тест, у которого его собственное подмножество не является таковым. Задача распознавания на основе тупиковых тестов решается следующим образом. Пусть \{T\} - множество тупиковых тестов таблицы T_{nml}. По тупиковому тестуj=(j_1,\ldots,j_k выделяется подописание для распознаваемого объекта X=(a_{j_1},\ldots,a_{j_r}), а затем сравнивается со всеми подописаниями объектов таблицы. Число совпадений с описаниями объектов i-го класса обозначается через \Gamma_{ji}(T).
Оценка объекта по i-ому классу \Gamma_{ji}(X) = \Gamma_i(X_j)=\frac{1}{m_j-m_{j-1}}\sum_{T \in\{T\}}{\Gamma_{ji}(T)}.

Далее объект относится к тому классу,по которому он получил максимальную оценку, в случае двух максимумов считается, что объект не классифицируется на заданном тесте.

Если считать, что не все признаки, описывающие объект, равнозначны, то они снабжаются числовыми весами p(j)=\frac{\tau_j(n,m)}{\tau(n,m)}, где \tau - число тупиковых тестов в таблице, \tau_j -число тупиковых тестов в таблице, содержащих j-ый столбец. Чем больше вес, тем важнее признак в описании объектов множества. Весами объектов, составляющих таблицу обучения, называется поощрительная величина \gamma. В случае совпадения распознаваемого объекта X с объектом из таблицы X_v \in Y_i, такое совпадение поощряется: \Gamma_T(X,X_v) = \gamma(X_v)(p(j_1),\ldots,p(j_r)), Оценка объекта по i-ому классу задается таким образом \Gamma_i(X)=\frac{1}{m_i-m_i-1}\sum_{T\in\{T\}}sum^{m_i}_{m_{i-1}+1}{\Gamma_T(X_v,X)}.

Построение тупиковых тестов

Про

Личные инструменты