Участник:Валентин Голодов/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
== Введение ==
== Введение ==
-
== Постановка задачи===
+
== Постановка задачи ==
Пусть требуется вычислить интеграл
Пусть требуется вычислить интеграл
{{ eqno | 1 }}
{{ eqno | 1 }}
-
<p align="center"><tex>I=\int_a^b{f(x)exp(\imath*\omega x)dx},</tex></p>
+
<p align="center"><tex>I=\int_a^b{f(x)exp{\{\imath*\omega x\}}dx},</tex></p>
где <tex>\omega(b-a)\gg 1,</tex> <tex>f(x)</tex> - гладкая на отрезке <tex>[a,b]</tex> функция.<br />
где <tex>\omega(b-a)\gg 1,</tex> <tex>f(x)</tex> - гладкая на отрезке <tex>[a,b]</tex> функция.<br />
== Изложение метода ==
== Изложение метода ==
=== Общий случай ===
=== Общий случай ===
-
Будем рассматривать функцию <tex>\textstyle exp(\imath*\omega x</tex> как весовую.<br />
+
Будем рассматривать функцию <tex>\textstyle exp{\{\imath*\omega x\}}</tex> как весовую.<br />
-
Подобно интегрированию без этого весового множителя, зададимся некоторыми <tex>d_1,\ldots,d_n \in [-1,1]</tex> и построим интерполяционный многочлен <tex>\texttt L_n(x)</tex> степени <tex>n-1,</tex> совпадающий с <tex>f(x)</tex> в точках <tex>x_j=\frac{b+a}{2}+\frac{b-a}{2}d_j,</tex> <tex>j=1,\ldots,n</tex> и заменим исходный интергал
+
Подобно интегрированию без этого весового множителя, зададимся некоторыми <tex>d_1,\ldots,d_n \in [-1,1]</tex> и построим
 +
[интерполяционный многочлен Лагранжа]<tex>L_n(x)</tex> степени <tex>n-1,</tex> совпадающий с <tex>f(x)</tex> в точках <tex>x_j=\frac{b+a}{2}+\frac{b-a}{2}d_j,</tex> <tex>j=1,\ldots,n</tex> и заменим исходный интеграл на {{ eqno | 2 }}<tex>\int_a^b{L_n(x)exp{\{\imath*\omega x\}}dx}.</tex> <br /> Последний интеграл vожет быть вычислен в явном виде
 +
::<tex>\int_a^b{L_n(x)exp{\{\imath*\omega x\}}dx}=S_n^\omega(f)=\frac{b-a}{2}exp{\left\{\imath\omega \frac{b+a}{2}\right\}}\sum_{j=0}^{n}D_j\left(\omega \frac{b-a}{2}\right)f(x_j),</tex> где
 +
<tex>D_j=\int_{-1}^{+1}{\left(\prod_{k\neq j}{\frac{\xi-d_k}{d_j-d_k}} \right)exp{\left\{\imath p\xi \right\}}d\xi}</tex>
=== Частные случаи для некоторых значений параметров ===
=== Частные случаи для некоторых значений параметров ===
== Список литературы ==
== Список литературы ==
-
* ''Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков.''&nbsp; Численные методы М.
+
* ''Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков.''&nbsp; Численные методы
 +
 
 +
М.
{{stub}}
{{stub}}
[[Категория:Численное интегрирование]]
[[Категория:Численное интегрирование]]
[[Категория:Учебные задачи]]
[[Категория:Учебные задачи]]

Версия 18:29, 16 декабря 2008

Содержание

Введение

Постановка задачи

Пусть требуется вычислить интеграл

( 1 )

I=\int_a^b{f(x)exp{\{\imath*\omega x\}}dx},

где \omega(b-a)\gg 1, f(x) - гладкая на отрезке [a,b] функция.

Изложение метода

Общий случай

Будем рассматривать функцию \textstyle exp{\{\imath*\omega x\}} как весовую.

Подобно интегрированию без этого весового множителя, зададимся некоторыми d_1,\ldots,d_n  \in [-1,1] и построим

[интерполяционный многочлен Лагранжа]L_n(x) степени n-1, совпадающий с f(x) в точках x_j=\frac{b+a}{2}+\frac{b-a}{2}d_j, j=1,\ldots,n и заменим исходный интеграл на
( 2 )
\int_a^b{L_n(x)exp{\{\imath*\omega x\}}dx}.
Последний интеграл vожет быть вычислен в явном виде
\int_a^b{L_n(x)exp{\{\imath*\omega x\}}dx}=S_n^\omega(f)=\frac{b-a}{2}exp{\left\{\imath\omega \frac{b+a}{2}\right\}}\sum_{j=0}^{n}D_j\left(\omega \frac{b-a}{2}\right)f(x_j), где

D_j=\int_{-1}^{+1}{\left(\prod_{k\neq j}{\frac{\xi-d_k}{d_j-d_k}} \right)exp{\left\{\imath p\xi \right\}}d\xi}

Частные случаи для некоторых значений параметров

Список литературы

  • Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков.  Численные методы

М.

Личные инструменты