Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Формула замены переменных в неопределенном интеграле)
(Формула замены переменных в неопределенном интеграле)
Строка 19: Строка 19:
::[[Изображение:Q3.png‎]]
::[[Изображение:Q3.png‎]]
-
то будет видно, что, для того чтобы вычислить интеграл [[Изображение:Q4.png‎]]), можно сделать подстановку <tex> х = \phi(t) <tex>, вычислить интеграл <tex> \int f(x) dx </tex> и затем вернуться к переменной <tex> t <tex>, положив <tex> х = \phi(t) <tex>.
+
то будет видно, что, для того чтобы вычислить интеграл [[Изображение:Q4.png‎]]), можно сделать подстановку <tex> х = \phi(t) </tex>, вычислить интеграл <tex> \int f(x) dx </tex> и затем вернуться к переменной <tex> t </tex>, положив <tex> х = \phi(t) </tex>.
Строка 44: Строка 44:
::[[Изображение:Q11.png‎]]
::[[Изображение:Q11.png‎]]
-
Отмtтим, что формулу {{eqref|2}} бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла <tex> \int f(x) dx </tex> с помощью
+
Отметим, что формулу {{eqref|2}} бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла <tex> \int f(x) dx </tex> с помощью

Версия 16:38, 16 ноября 2008

Формула замены переменных в неопределенном интеграле

Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.

Теорема.

Пусть функции  f(x) и  \phi(x) определены соответственно на промежутках  \Delta_x и  \Delta_y , причем  \phi(\Delta_t) \subset \Delta_x . Если функция  f имеет на  \Delta_x первообразную  F{x) и, следовательно,

Изображение:Q1.jpg‎ (1)

а функция  \phi(x) дифференцируема на  \Delta_t , то функция  f(\phi(t))\phi^,(t) имеет на  \Delta_t , первообразную  F(\phi(t)) и

Изображение:Q2.png‎ (2)

Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой  \phi(t) = x . Это название объясняется тем, что если формулу (2) записать в виде

Изображение:Q3.png‎

то будет видно, что, для того чтобы вычислить интеграл Изображение:Q4.png‎), можно сделать подстановку  х = \phi(t) , вычислить интеграл  \int f(x) dx и затем вернуться к переменной  t , положив  х = \phi(t) .


Примеры.

1. Для вычисления интеграла  \int cos ax dx естественно сделать подстановку  u = ах , тогда

Изображение:Q5.png‎

2. Для вычисления интеграла Изображение:Q6.png‎ удобно применить подстановку  u = x^3 + a^3 :

Изображение:Q7.png‎

3. При вычислении интегралов вида Изображение:Q8.png‎ полезна подстановка  u = \phi(х) :

Изображение:Q9.png‎

Например,

Изображение:Q10.png‎

Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:

Изображение:Q11.png‎

Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла  \int f(x) dx с помощью

Личные инструменты