Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Объем параллелепипеда)
(Формулы для определителя)
Строка 1: Строка 1:
 +
== Свойства распределения хи-квадрат ==
 +
 +
* Распределение хи-квадрат устойчиво относительно суммирования. Если <math>\!Y_1, Y_2</math> независимы, и <math>\!Y_1 \sim \chi^2(n_1)</math>, а <math>\!Y_2 \sim \chi^2(n_2)</math>, то
 +
: <math>Y_1 + Y_2 \sim \chi^2(n_1 + n_2)</math>.
 +
* Из определения легко получить [[моменты случайной величины|моменты]] распределения хи-квадрат. Если <math>Y \sim \chi^2(n)</math>, то
 +
: <math>\mathbb{E}[Y] = n</math>,
 +
: <math>\!\mathrm{D}[Y] = 2n</math>.
 +
* В силу [[Центральная предельная теорема|центральной предельной теоремы]], при большом числе степеней свободы распределение случайной величины <math>Y \sim \chi^2(n)</math> может быть приближено нормальным <math>Y \approx N( n, 2n )</math>. Более точно
 +
: <math>\frac{Y-n}{\sqrt{2n}} \to N(0,1)</math> [[сходимость по распределению|по распределению]] при <math>n \to \infty</math>.
 +
== Формулы для определителя ==
== Формулы для определителя ==

Версия 12:23, 17 ноября 2009

Содержание

Свойства распределения хи-квадрат

  • Распределение хи-квадрат устойчиво относительно суммирования. Если <math>\!Y_1, Y_2</math> независимы, и <math>\!Y_1 \sim \chi^2(n_1)</math>, а <math>\!Y_2 \sim \chi^2(n_2)</math>, то
<math>Y_1 + Y_2 \sim \chi^2(n_1 + n_2)</math>.
  • Из определения легко получить моменты распределения хи-квадрат. Если <math>Y \sim \chi^2(n)</math>, то
<math>\mathbb{E}[Y] = n</math>,
<math>\!\mathrm{D}[Y] = 2n</math>.
  • В силу центральной предельной теоремы, при большом числе степеней свободы распределение случайной величины <math>Y \sim \chi^2(n)</math> может быть приближено нормальным <math>Y \approx N( n, 2n )</math>. Более точно
<math>\frac{Y-n}{\sqrt{2n}} \to N(0,1)</math> по распределению при <math>n \to \infty</math>.

Формулы для определителя

1. Если матрица  A невырожденная, то  A = P^{-1}LDU и  \det A = \det P^{-1} \det L \det D \det U = \pm (произведение ведущих элементов).

Знак плюс или минус дается определителем матрицы  P^{-1} (или  P ) и зависит от того, является число перестановок строк в приведении четным или нечетным. Для треугольных сомножителей имеем  \det L = \det U = 1 и  \det D = d_1 ... d_n

2. Определитель матрицы  A может быть вычислен разлоразложением по алгебраическим дополнениям i-й строки:

 \det A = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} .

Алгебраическое дополнение  \det A_{ij} есть определитель подподматрицы  M_{ij} , взятый с нужным знаком:

 A_{ij} = (-1)^{i+j} \det M_{ij} .

Подматрица  M_{ij} образуется вычеркиванием i-й строки и j-го столбца матрицы  A .

3. Правило Крамера: j-й элемент вектора  x = A^{-1} b равен  x_j = \frac {\det B_j}{\det A} , где

Изображение:S1.png‎

В  B_j - вектор  b заменяет собой j-й столбец матрицы  A .

Пример.

Решение системы

Изображение:S2.png‎

4. Формула для ведущих элементов.

Если матрица  A представляется в виде  LDU  , то левые верхние углы удовлетворяют соотношению

 A_k = L_k D_k U_k

Для разных  k разложения подматриц  A_k «согласованы» друг с другом.

Объем параллелепипеда

Связь между определителем и объемом не очевидна, однако мы можем предположить для начала, что все углы прямые, т. е. грани взаимно перпендикулярны, и мы имеем дело с прямоугольным параллелепипедом. Тогда объем его равен просто произведению длин ребер  l_1 l_2 ... l_n .

Мы хотим получить ту же самую формулу с помощью определителя. С этой целью вспомним, что ребра параллелепипеда представляются строками матрицы  A . В нашем случае эти строки взаимно ортогональны, так что

Изображение:S3.png‎

Величины  l^{2}_{i} суть квадраты длин строк матрицы, т. е. квадраты длин ребер, и нули вне диагонали получаются вследствие ортогональности строк. Переходя к определителям, получаем

Изображение:S4.png‎

Извлекая корень, мы и приходим к требуемому соотношению: определитель равняется объему. Знак при  \det A будет зависеть от того, образуют ребра правостороннюю систему координат вида  xyz или левостороннюю  xyz .

Если область не прямоугольна, то объем уже не равен произведению длин ребер. В плоском случае «объем» параллелограмма равен произведению длины основания на высоту  h .

Вектор  pb длины  h есть разность между вектором второй строки  Ob = (a_{21}, a_{22}) и его проекцией  Op на вектор первой строки.

Изображение:S5.png‎

Площадь паралелограмма равна  \det A .

Изображение:S6.png‎

Площади квадрата и параллелограмма.

Первый представляет собой единичный квадрат, и его площадь, равна 1. Второй есть параллелограмм с единичными основанием и высотой; его площадь не зависит от «сдвига», даваемого коэффициентом  c , и равна 1.

Формула замены переменных в неопределенном интеграле

Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.

Теорема.

Пусть функции  f(x) и  \phi(x) определены соответственно на промежутках  \Delta_x и  \Delta_y , причем  \phi(\Delta_t) \subset \Delta_x . Если функция  f имеет на  \Delta_x первообразную  F{x) и, следовательно,

Изображение:Q1.jpg‎ (1)

а функция  \phi(x) дифференцируема на  \Delta_t , то функция  f(\phi(t))\phi^,(t) имеет на  \Delta_t , первообразную  F(\phi(t)) и

Изображение:Q2.png‎ (2)


Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой  \phi(t) = x . Это название объясняется тем, что если формулу (2) записать в виде

Изображение:Q3.png‎

то будет видно, что, для того чтобы вычислить интеграл Изображение:Q4.png‎), можно сделать подстановку  x = \phi(t) , вычислить интеграл  \int f(x) dx и затем вернуться к переменной  t , положив  x = \phi(t) .


Примеры.

1. Для вычисления интеграла  \int cos ax dx естественно сделать подстановку  u = ax , тогда

Изображение:Q5.png‎

2. Для вычисления интеграла Изображение:Q6.png‎ удобно применить подстановку  u = x^3 + a^3 :

Изображение:Q7.png‎

3. При вычислении интегралов вида Изображение:Q8.png‎ полезна подстановка  u = \phi(x) :

Изображение:Q9.png‎

Например,

Изображение:Q10.png‎

Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:

Изображение:Q11.png‎

Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла  \int f(x) dx с помощью соответствующей замены переменного  x = \phi(t) свести к вычислению интеграла Изображение:Q12.png‎ (если этот интеграл в каком-то смысле «проще» исходного).

В случае, когда функция  \phi имеет обратную  \phi^{-1} , перейдя в обеих частях формулы (2) к переменной  x с помощью подстановки  t = \phi^{-1}(x) и поменяв местами стороны равенства, получим

Изображение:Q13.png‎

Эта формула называется обычно формулой интегрирования заменой переменной.

Для того чтобы существовала функция  \phi^{-1} , обратная  \phi , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке  \Delta_t функция  \phi была строго монотонной. В этом случае, существует однозначная обратная функция  \phi^{-1} .

4. Интегралы вида Изображение:Q14.png‎ в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.

Действительно, замечая, что Изображение:Q15.png‎, сделаем замену переменной Изображение:Q16.png‎ и положим Изображение:Q17.png‎. Тогда Изображение:Q18.png‎ и, в силу формулы (2), получим

Изображение:Q19.png‎

(перед  t^2 стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной  t к переменной  x , получим искомый интеграл.

Подобным же приемом вычисляются и интегралы вида

Изображение:Q20.png‎

5. Интеграл Изображение:Q21.png‎ можно вычислить с помощью подстановки  x = a sin t . Имеем  dx = a cos t dt , поэтому

Изображение:Q22.png‎

Подставляя это выражение  t = arcsin \frac{x}{a} и замечая, что

Изображение:Q23.png‎

окончательно будем иметь

Изображение:Q24.png‎

Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.

Формула замены переменных в определенном интеграле

Теорема.

Пусть функция  f(x) непрерывна на отрезке  [a'; b'] , а функция  \phi(t) имеет непрерывную производную  \phi'(t) на отрезке  [\alpha; \beta] , причём все значения  x = \phi(t) при  [t \in{\alpha};{\beta}] принадлежат отрезку  [a'; b'] , в том числе  \phi(\alpha) = a и  \phi(\beta) = b . Тогда имеет место равенство

Изображение:Img1.png‎

Замечание.

Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной  x не возвращаться к исходному интегралу от функции переменной  t . После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница.

Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной  x должны быть указаны пределы изменения именно  x (то есть  a и  b ), в то время как в исходном интеграле по переменной  t указаны пределы изменения  t (то есть  \alpha и  \beta ).

Советы о том, какая замена целесообразна для вычисления того или иного интеграла, - те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся.

Пример.

Вычислим интеграл

Изображение:Img2.png‎

Для этого сделаем замену  x = \phi(t) = \sin t , откуда  dx = \phi'(t)dt = \cos t dt. Кроме того, при  t = 0 имеем  x = \sin 0 = 0 , а при  t = \frac{\pi}{2} имеем  x = \sin \frac{\pi}{2} = 1 . Получаем:

Изображение:Img2.png‎


Квадратурные формулы интерполяционного типа

Будем рассматривать формулы приближенного вычисления интегралов

Изображение:W1.png‎ (3)

где  p(x) > 0 — заданная интегрируемая функция (так называемая весовая функция) и  f(x) — достаточно гладкая функция. Рассматриваемые далее формулы имеют вид

Изображение:W2.png‎ (4)

где  x \in[{a};{b}] и  c_k — числа,  k = 0, 1, ..., n .

Получим квадратурные формулы путем замены  f(x) интерполяционным многочленом сразу на всем отрезке  [a, b] . Полученные таким образом формулы называются квадратурными формулами интерполяционного типа. Как правило, точность этих формул возрастает с увеличением числа узлов интерполирования. Формулы прямоугольников, трапеций и Симпсона являются частными случаями квадратурных формул интерполяционного типа, когда  n = 0, 1, 2, p(x) = 1 .

Получим выражения для коэффициентов квадратурных формул интерполяционного типа. Пусть на отрезке  [a, b] заданы узлы интерполирования  x_k, k = 0, 1, ... n . Предполагается, что среди этих узлов нет совпадающих, в остальном они могут быть расположены как угодно на  [a, b] .

Заменяя в интеграле (3) функцию  f(x) интерполяционным многочленом Лагранжа

Изображение:W3.png‎

получим приближенную формулу (4), где

Изображение:W4.png‎ (5)

Таким образом, формула (4) является квадратурной формулой интерполяционного типа тогда и только тогда, когда ее коэффициенты вычисляются по правилу (5).


Формула замены переменных в кратном интеграле

Пусть  F — непрерывно дифференцируемое взаимпо-однозпачное отображение открытого множества  G \subset R_{x}^{n} в пространство  R_{y}^{n} и его якобиан  J_{F} не обращается в нуль на множестве  G .

Теорема.

Если  E — измеримое множество, содержащееся вместе со своим замыканием  \bar{E} в открытом множестве  G :  E \subset \bar{E} \subset G , а функция  f непрерывна на множестве  \bar{F(E)} , то

Изображение:A1.png‎ (6)

Эта формула равносильна формуле

Изображение:A2.png‎ (7)

Действительно, ограниченная функция одновременно интегрируема или нет как на измеримом множестве, так и на его замыкании, причем в случае интегрируемости интегралы от функции по множеству и по его замыканию совпадают.

В нашем случае функции  f(y) и Изображение:A3.png‎‎ непрерывны соответственно на компактах  \bar{F(E)} и  \bar{E} (являющихся замыканием измеримых множеств  F(E) и  E ), следовательно, ограничены и интегрируемы на них.

Таким образом, все входящие в формулы (6) и (7) интегралы существуют, а сами эти формулы равносильны. Эти формулы называются формулами замены переменных в кратном интеграле.

Замена переменных в кратном интеграле часто существенно упрощает его исследование и вычисление. При этом в отличие от однократного интеграла нередко целью замены переменного является не упрощение подынтегральной функции, а переход к более простой области интегрирования даже ценой некоторого усложнения подынтегральной функции.

В качестве примера применения формулы замены переменных в кратном интеграле рассмотрим для двумерного интеграла случай перехода от декартовых координат к полярным.

Рассмотрим плоскость, на которой декартовы координаты обозначены  r ,  \varphi и на ней открытый прямоугольник

Изображение:A4.png‎

При отображении

Изображение:A5.png‎ (8)

прямоугольник  G отображается на множество  G плоскости с декартовыми координатами  x, y , которое представляет собой круг Изображение:A6.png‎, из которого удален радиус Изображение:A7.png‎.

Отображение (8) и его якобиан

Изображение:A8.png‎

непрерывно продолжаемы на замкнутый прямоугольник

Изображение:A9.png‎

образом которого при продолженном отображении является замкнутый круг  G , на котором отображение (8) уже не является взаимно-однозначным: взаимная однозначность нарушается на границе прямоугольника  G — отрезки Изображение:A10.png‎ при  \varphi = 0 и  \varphi = 2 \pi отображаются в один и тот же отрезок Изображение:A10.png‎,  y = 0 , а отрезок Изображение:A11.png‎и вовсе отображается в точку (0, 0). Якобиан продолженного отображения обращается в нуль при  r = 0 .

Изображение:A15.png‎

Для отображения (8) и непрерывной на круге Изображение:A12.png‎ функции  f(x)(y) имеет место формула

Изображение:A13.png‎

Приведем конкретный пример вычисления интеграла по этой формуле:

Изображение:A14.png‎


Сведения об интегралах с бесконечными пределами

Определение.

Пусть функция  f(x) непрерывна на бесконечном промежутке  [a, \infty) . Несобственным интегралом от функции  f(x) на промежутке  [a, \infty) называется предел Изображение:Z1.png‎ и обозначается

Изображение:Z2.png‎

Определение.

Пусть функция  f(x) непрерывна на бесконечном промежутке  (-\infty, b) . Несобственным интегралом от функции f(x) на промежутке  (-\infty, b) называется предел Изображение:Z3.png‎ и обозначается

Изображение:Z4.png‎

Определение.

Пусть функция  f(x) непрерывна на всей числовой оси. Несобственный интеграл от функции  f(x) на бесконечном промежутке  (-\infty, +\infty) определяется равенством

Изображение:Z5.png‎

где  c — любое число на оси  Ox .

Из определений следует, что сходящиеся несобственные интегралы с бесконечными пределами интегрирования являются конечными пределами определенных интегралов с переменными верхним или нижним пределами при стремлении этих пределов к бесконечности.

Пусть функция  f(x) непрерывна и неотрицательна на бесконечном промежутке  [a, \infty) . Известно, что интеграл  \int_{a}^{b} f(x) dx численно равен площади криволинейной трапеции, ограниченной снизу отрезком  [a, b] оси  Ox , сверху — кривой  y = f(x) , слева и справа — прямыми  x = a и  x = b . При возрастании  b прямая  x = b перемещается вправо вдоль оси  Ox . Если при этом интеграл  \int_{a}^{+\infty} f(x) dx сходится, то его величину принимают за площадь бесконечной трапеции, ограниченной снизу осью  Ox , сверху — графиком функции  y = f(x) , слева — прямой  x = a .

Изображение:Z6.png‎
Личные инструменты