Участник:EvgSokolov/Песочница

Материал из MachineLearning.

Перейти к: навигация, поиск

fRMA (Frozen Robust Multi-Array Analysis)

Рассматривается следующая модель уровня экспрессии:

(1)
 Y_{ijkn} = \theta_{in} + \phi_{jn} + \gamma_{jkn} + \varepsilon_{ijkn}

Здесь используются следующие обозначения:

  • k — номер партии микрочипов  k \in 1, \dots, K . Говорят, что два чипа принадлежат одной партии, если эксперименты с ними были проведены в одной лаборатории в одно и то же время.
  • i — номер микрочипа  i \in 1, \dots, I_k .
  • n — номер набора проб  n \in 1, \dots, N . Также через n мы будем обозначать номер гена, соответствующего n-му набору проб.
  • j — номер пробы  i \in 1, \dots, J_n .
  • Y_{ijkn} — предобработанная (с вычтенным фоном и нормализованная) логарифмированная интенсивность пробы j из набора проб n микрочипа i из партии микрочипов k.
  • \theta_{in} — экспрессия гена n на i-м микрочипе.
  • \phi_{jn} — коэффициент сродства пробы j гену n.
  • \gamma_{jkn} — поправка к коэффициенту сродства, учитывающая различия между партиями проб.
  • \varepsilon_{ijkn} — случайная ошибка с нулевым средним.

В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: \mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2. Также делается предположение, что \gamma_{jkn} — это случайная величина, дисперсия которой не зависит от партии чипов: \mathbb{D} \gamma_{jkn} = \tau_{jn}^2.

Обучение модели

Для обучения необходимы данные с большого числа микрочипов.

Сначала ко всем микрочипам применяется метод квантильной нормализации, приводящий все данные к одному распределению. В дальнейшем мы будем называть это распределение <<представительным>>.

Непосредственная настройка модели (1) при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. Рассмотрим упрощенную модель

 Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn}

Данная модель с помощью робастного метода настраивается по обучающей выборке для получения оценок параметров \hat \theta_{in} и  \hat \phi_{jn} . Затем вычисляются остатки r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) , с помощью которых оцениваются дисперсии \sigma_{jn}^2 и \tau_{jn}^n:

 \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2;
 \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2,

где \bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} .

Личные инструменты