Критерий хи-квадрат
Материал из MachineLearning.
(→Проблемы) |
(→Проверка гипотезы H_0) |
||
Строка 32: | Строка 32: | ||
* <tex>\chi^2_1 < \chi^2 < \chi^2_2</tex>, гипотеза <tex>H_0</tex> выполняется. | * <tex>\chi^2_1 < \chi^2 < \chi^2_2</tex>, гипотеза <tex>H_0</tex> выполняется. | ||
- | * <tex>\chi^2 \leq \chi^2_1</tex> (попадает в левый "хвост" распределения) гипотеза <tex>H_0</tex> | + | * <tex>\chi^2 \leq \chi^2_1</tex> (попадает в левый "хвост" распределения). Следовательно теоретические и практические значения очень близки и гипотеза <tex>H_0</tex> выполняется. |
* <tex>\chi^2 \geq \chi^2_2</tex> (попадает в правый "хвост" распределения) гипотеза <tex>H_0</tex> отвергается. | * <tex>\chi^2 \geq \chi^2_2</tex> (попадает в правый "хвост" распределения) гипотеза <tex>H_0</tex> отвергается. |
Версия 20:54, 6 января 2009
|
Определение
Критерий - наиболее часто используемый статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.
Пусть дана случайная величина X .
Гипотеза : с. в. X подчиняется закону распределения .
Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X:
.
По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения производится с помощью специально подобранной случайной величины — критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):
Гипотеза : Хn порождается функцией .
Разделим [a,b] на k непересекающихся интервалов ;
Пусть - количество наблюдений в j-м интервале: ;
- вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;
Ожидаемое число попаданий в j-ый интервал;
Статистика: - Распределение хи-квадрат с k-1 степенью свободы.
Проверка гипотезы
В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:
- , гипотеза выполняется.
- (попадает в левый "хвост" распределения). Следовательно теоретические и практические значения очень близки и гипотеза выполняется.
- (попадает в правый "хвост" распределения) гипотеза отвергается.
Пример 1
Проверим гипотезу : если взять случайную выборку 100 человек из некоторой популяции, в которой количество мужчин и женщин примерно одинаково (встречаются с одинаковой частотой), то в наблюдаемой выборке отношение количества мужчин и женщин будет соотноситься с частотой по всей популяции (50/50). Пусть в наблюдаемой выборке 46 мужчин и 54 женщины, тогда число степеней свобод и
Т.о. при уровне значимости гипотеза выполняется (см. таблицу значений ф-ии ).
Сложная гипотеза
Гипотеза : Хn порождается функцией - неизвестна. Найдем с помощью метода максимального правдоподобия.
, , - фиксированы при .
Теорема Фишера Для проверки сложной гипотезы критерий представляется в виде:
, где
Пример 2
Пусть есть квадрат на местности, разделенный сеткой из 24-ёх горизонтальных и 24-ёх вертикальных линий на 576 равных участков. По квадрату производится артиллерийский обстрел. Подсчитывается количество попаданий снарядов в каждый из участков. Получены следующие данные: 0 попаданий - 229 участков, 1 попадание - 211 участок, 2 - 93, 3 - 35, 4 - 7, 5 и 6 - 0, 7 - 1 попадание. Гипотеза : стрельба случайна (нет "целевых" участков).
Закон редких событий (распределение Пуассона)
, S - число попаданий
Тогда при уровне значимости гипотеза не выполняется (см. таблицу значений ф-ии ).
Объединим события (4,5,6,7) с малой частотой попаданий в одно, тогда имеем:
1 попадание - 211 участок, 2 - 93, 3 - 35, {4,5,6,7} - 8.
огда при уровне значимости гипотеза H_0</tex> верна.
Проблемы
Критерий ошибается на выборках с низкочастотными (редкими) событиями. Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями. Этот способ называется коррекцией Йетса (Yates' correction).