Биномиальное распределение
Материал из MachineLearning.
|  Функция вероятности | |
|  Функция распределения | |
| Параметры |   | 
| Носитель |   | 
| Функция вероятности |   | 
| Функция распределения |   | 
| Математическое ожидание |   | 
| Медиана |  одно из  | 
| Мода |   | 
| Дисперсия |   | 
| Коэффициент асимметрии |   | 
| Коэффициент эксцесса |   | 
| Информационная энтропия |   | 
| Производящая функция моментов |   | 
| Характеристическая функция |   | 
Содержание | 
Определение
Биномиальное распределение — дискретное распределение вероятностей случайной величины  принимающей целочисленные значения 
 с вероятностями:
Данное распределение характеризуется двумя параметрами: целым числом  называемым числом испытаний, и вещественным числом 
 
 называемом вероятностью успеха в одном испытании. Биномиальное распределение — одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из 
 независимых испытаний, в каждом из которых может произойти "успех" с вероятностью 
 то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы 
 независимых слагаемых, имеющих распределение Бернулли.
Основные свойства
- Математическое ожидание: 
 - Дисперсия: 
 - Асимметрия: 
при
распределение симметрично относительно центра
 
 Асимптотические приближения при больших 
Если значения  велики, то непосредственное вычисление вероятностей событий, связанных с данной случайной величиной, технически затруднительно.
В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).
Приближение Пуассона
Приближение распределением Пуассона применяется в ситуациях, когда значения  большие, а значения 
 близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром 
Строгая формулировка: если  и 
 таким образом, что 
 то 
Более того, справедлива следующая оценка. Пусть  — случайная величина, имеющая распределение Пуассона с параметром 
Тогда для произвольного множества 
 справедливо неравенство:
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
Нормальное приближение
Приближение нормальным распределением используется в ситуациях, когда  а 
 фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении 
 в виде суммы 
 слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
где
близко к стандартному нормальному.
Локальная теорема Муавра-Лапласа
Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям  таким что 
 имеет место
где  — плотность стандартного нормального распределения.
Интегральная теорема Муавра-Лапласа
На практике необходимость оценки вероятностей отдельных значений, которую дает локальная теорема Муавра-Лапласа, возникает нечасто. Гораздо более важно оценивать вероятности событий, включающих в себя множество значений. Для этого используется интегральная теорема, которую можно сформулировать в следующем виде [1, гл. I, §6]:
при
где случайная величина  имеет стандартное нормальное распределение 
 и аппроксимирующая вероятность определяется по формуле
где  — функция распределения стандартного нормального закона: 
Есть ряд результатов, позволяющих оценить скорость сходимости. В [1, гл. I, §6] приводится следующий результат, являющийся частным случаем теоремы Берри-Эссеена:
где  — функция распределения случайной величины 
 На практике решение о том, насколько следует доверять нормальному приближению, принимают исходя из величины 
 Чем она больше, тем меньше будет погрешность приближения. 
Заметим, что асимптотический результат не изменится, если заменить строгие неравенства на нестрогие и наоборот. Предельная вероятность от такой замены также не поменяется, так как нормальное распределение абсолютно непрерывно и вероятность принять любое конкретное значение для него равна нулю. Однако исходная вероятность от такой замены может измениться, что вносит в формулу некоторую неоднозначность. Для больших значений  изменение будет невелико, однако для небольших 
 это может внести дополнительную погрешность.
Для устранения этой неоднозначности, а также повышения точности приближения рекомендуется задавать интересующие события в виде интервалов с полуцелыми границами. При этом приближение получается точнее. Это связано с тем интуитивно понятным соображением, что аппроксимация кусочно-постоянной функции (функции распределения биномиального закона) с помощью непрерывной функции дает более точные приближения между точками разрыва, чем в этих точках.
Пример
Пусть  
 Оценим вероятность того, что число успехов будет отличаться от наиболее вероятного значения 
 не более чем на 
. Заметим, что значение 
 очень мало, поэтому применение нормального приближения здесь довольно ненадежно.
Точная вероятность рассматриваемого события равна
Применим нормальное приближение с той расстановкой неравенств, которая дана выше (снизу строгое, сверху нестрогое):
Ошибка приближения равна .
Теперь построим приближение, используя интервал с концами в полуцелых точках:
Ошибка приближения равна  — примерно в 5 раз меньше, чем в предыдущем подходе.
Постулаты и их ложность
Биномиальное распределение традиционной интерпретации основано на трёх постулатах [2]
- Биномиальное распределение — распределение одной случайной величины;
 - Биномиальное распределение появляется в последовательности независимых испытаний (экспериментов);
 - Математическое ожидание биномиального распределения равно 
, где
- конечное число независимых испытаний с двумя взаимно исключающими исходами каждое: положительный исход 1 c вероятностью
и отрицательный исход 0 с вероятностью
.
 
Ложность постулатов доказывается двумя теоремами [3,4].
Теорема 1. Биномиальное распределение не является распределением одной случайной величины.
Доказательство.
Если энциклопедически известно известно , что биномиальное распределение является частным случаем традиционной интерпретации полиномиального распределения как совместного распределения вероятностей независимых  случайных величин при сокращении в нём числа 
 случайных величин до двух, то подставляя условие 
 в формулу традиционной интерпретации полиномиального распределения
получим формулу биномиального распределения не одной случайной величины, а двух случайных величин
что и требовалось доказать.
Примечание. Характер зависимости второй случайной величины от первой описан ниже.
Доказательство ложности второго и третьего постулатов.
Теорема 2. Биномиальное распределение не появляется в последовательности независимых испытаний (экспериментов) и его математическое ожидание не равно  .
Доказательство.
Допустим, что
математическое ожидание биномиального распределения, появляющегося в последовательности независимых испытаний (экспериментов). Тогда при выполнении условия
математическое ожидание этого распределения будет больше единицы, что противоречит аксиоматике Колмогорова, согласно которой сумма всех вероятностей распределения, включая и его математическое ожидание, должна быть равной единице.
Теорема 2 доказана.
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.
2.Прохоров А. В. Полиномиальное распределение // Вероятность и математическая статистика: Энциклопедия. М.: Большая Российская энциклопедия, 1999. C. 470-471. ISBN 5 85 270265 X .
3.Голоборщенко В. С. Парадоксы в современной теории вероятностей. Часть 1: Ложность принятых постулатов и парадигм. // Проблемы создания информационных технологий. Сборник научных трудов МАИТ. М.: ООО Техполиграфцентр, 2006. Вып. 14, С. 9-15.
4.Голоборщенко В. С. Производящие и характеристические функции полиномиального и биномиального распределений как парадоксы в современной теории вероятностей // Проблемы создания информационных технологий. Сборник научных трудов МАИТ. М.: МАИТ, 2008. Вып. 17, С. 5-11.
Ссылки
- Биномиальное распределение (Википедия)
 - Binomial distribution (Wikipedia)
 

