Прикладная алгебра (курс лекций, С.И. Гуров)

Материал из MachineLearning.

(Перенаправлено с Па)
Перейти к: навигация, поиск

Обзорный курс для студентов 3-го потока ВМК МГУ по основам алгебры (группы, кольца, поля, частично-упорядоченные множества) и её приложениям в кодировании и комбинаторике.

Лектор: Гуров Сергей Исаевич

Ассистент: Кропотов Д.А.

Свои вопросы по курсу и пожелания можно направлять письмом по адресу sgur@cs.msu.ru

В осеннем семестре 2017/2018 уч. г. занятия проходят на ВМК по понедельникам в ауд. П-8а, начало в 12-50.

Новости

13.11.17: в ближайший понедельник, 20 ноября, состоится написание контрольной работы по курсу. Студенты групп 320, 323, 324, 325 пишут контрольную работу в ауд. П-8а, начало в 12-50. Студенты групп 321, 322, 327, 328 пишут контрольную в ауд. П-14, начало в 16-20.

18.09.17: занятия по курсу теперь проходят в ауд. П-8а.

Контрольная работа

В программе курса предусмотрена письменная контрольная работа. Успешное написание контрольной работы является обязательным условием допуска к экзамену по курсу. При отсутствии допуска студент пишет контрольную работу на экзамене и, в случае успеха, сдает экзамен на первой пересдаче. При написании контрольной работы разрешается пользоваться любыми бумажными материалами, а также калькуляторами. Использование электронных устройств (кроме калькуляторов) запрещено.

Материалы

Конспект лекций

Программа курса

Конечные поля (поля Галуа)

  1. Группы и кольца (напоминание)
  2. Поле вычетов по модулю простого числа
  3. Вычисление элементов в конечных полях
  4. Линейная алгебра над конечным полем
  5. Корни многочленов над конечным полем
  6. Существование и единственность поля Галуа из p^n элементов
  7. Циклические подпространства
  8. Решение задач

Коды, исправляющие ошибки

  1. Помехоустойчивое кодирование, блоковое кодирование, коды Хэмминга
  2. Групповые (линейные) коды
  3. Циклические коды
  4. Коды БЧХ
  5. Решение задач

Теория перечисления Пойя

  1. Действие группы на множестве
  2. Применение леммы Бернсайда для решения комбинаторных задач
  3. Применение теоремы Пойя для решения комбинаторных задач


Литература

  1. Воронин В.П. Дополнительные главы дискретной математики, ф-т ВМК, 2002.
  2. Гуров С.И. Булевы алгебры, упорядоченные множества, решетки: определения, свойства, примеры. Либроком, 2013.
  3. Журавлев Ю.И., Флеров Ю.А., Вялый М.Н. Дискретный анализ. Основы высшей алгебры. М3-Пресс, 2007.
  4. Лидл Р., Нидеррайтер Г. Конечные поля: в 2-х т. Мир, 1988.
  5. Нефедов В.Н., Осипова В.А. Курс дискретной математики, МАИ, 1992.
  6. Ромащенко А.Е., Румянцев А.Ю., Шень А. Заметки по теории кодирования. МЦНМО, 2011.
  7. Lin S., Costello D. Error Control Coding Fundamentals and Applications. Prentice-Hall, 1983.
  8. Берлекэмп Э. Алгебраическая теория кодирования. - М.: Мир, 1971.
  9. Блейхут Р. Теория и практика кодов, контролирующих ошибки. - М.: Мир, 1986.
  10. Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. - М.: Связь. - 1979.
  11. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. – М.: Техносфера. - 2006.
  12. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. – М.: Мир. – 1976.

См. также

Страница кафедры математических методов прогнозирования ВМК МГУ

Курс «Прикладная алгебра» для студентов ММП

Личные инструменты