Участник:Strijov
Материал из MachineLearning.
м (→Лекции) |
м (→Лекции) |
||
Строка 44: | Строка 44: | ||
== Лекции == | == Лекции == | ||
- | * Methods of Preference Learning for Ordinal Classification and Decision Making, [[media:Strijov2014PreferenceLearning_AMA.pdf| slides | + | * Methods of Preference Learning for Ordinal Classification and Decision Making, [[media:Strijov2014PreferenceLearning_AMA.pdf| slides (pdf)]]. |
* Model generation and selection using coherent Bayesian inference, [[media:Strijov2015ModelGenAndSel_AMA.pdf| 28.01.2015 slides (pdf)]], [[media:Presentation_en_acc.pdf| 22.04.2015 (pdf)]]. | * Model generation and selection using coherent Bayesian inference, [[media:Strijov2015ModelGenAndSel_AMA.pdf| 28.01.2015 slides (pdf)]], [[media:Presentation_en_acc.pdf| 22.04.2015 (pdf)]]. | ||
* Basic Understanding of Quantitative Modelling, [[media:Strijov2012QuantitativeModelling.pdf | slides (pdf)]]. | * Basic Understanding of Quantitative Modelling, [[media:Strijov2012QuantitativeModelling.pdf | slides (pdf)]]. |
Версия 13:52, 8 сентября 2015
Вадим Викторович Стрижов
- Вычислительный центр РАН, д.ф.-м.н., ведущий научный сотрудник
- Кафедра «Интеллектуальные системы» МФТИ, доцент
- Журнал «Машинное обучение и анализ данных», редактор
- MachineLearning.ru, администратор
Компендиум
- План работы исследовательской группы ИС ФУПМ МФТИ
- Статьи ccas.ru/strijov
- Объявления strijov.com
- Ссылки на scholar.google по-английски и по-русски, и на Math-Net
Текущие проекты (заметка для новых студентов)
Новые проекты
В частности:
- Анализ поведения человека по измерениям датчиков мобильного телефона и носимых устройств.
- Анализ сигналов в электроэнцефалографии, магнитоэнцефалографии, электрокардиографии.
- Тематическое моделирование, анализ коллекций текстов, построение поисковых систем, структурное обучение.
- Теория автоматического порождения и выбора моделей, теория согласования экспертных оценок и построения рейтингов, алгебра и теория категорий.
- Применение графических ускоритетей для оптимизаций нейронных сетей глубокого обучения и для построения моделей метрического обучения.
Старые проекты
- Порождение математических моделей
Моделируется физическое, биологическое или другое измеряемое явление. Например, распространение нервного импульса, изменение давление в камере внутреннего сгорания, изменение цены опциона в ходе торгов. Требуется разработать алгоритм, который автоматически порождает модели, понятные специалистам в прикладной области.
- Обработка космических снимков
Спутник фотографирует поверхность земли. Один и тот же участок фотографируется с интервалом в месяц. Требуется по фотографии определить возможные медленные движения инженерных сооружений, расположенных на поверхности земли.
- Прогнозирование загруженности участков железной дороги
По данным железнодорожных перевозок и микроэкономическим показателям требуется спрогнозировать загруженность железнодорожного узла.
- Прогнозирование потребления и цен электроэнергии
По историческим ценам и объемам потребленной электроэнергии требуется сделать почасовой прогноз на следующий день. Визуализация для принятия решений при планировании крупных конференций По тезисам конференции EURO за последние годы требуется построить систему, которая бы визуально рекомендовала научную область и сессию докладчику-новичку.
- Прогнозирование инфаркта по иммунологическим данным
Есть четыре класса пациентов: после операции, перед операцией и две группы здоровых. Измеряется концентрация определенных белков на поверхности кровяных телец. Измерения дорогие, пациентов мало. Требуется предложить прогностическую модель.
Учебные курсы, кафедра «Интеллектуальные системы» МФТИ
Лекции
- Methods of Preference Learning for Ordinal Classification and Decision Making, slides (pdf).
- Model generation and selection using coherent Bayesian inference, 28.01.2015 slides (pdf), 22.04.2015 (pdf).
- Basic Understanding of Quantitative Modelling, slides (pdf).
- Машинное обучение и моделирование экспериментальных данных, slides (pdf).
- Создание системы прогнозирования объемов грузовых железнодорожных перевозок, slides (pdf).
Исследовательская группа
3
- Артем Бочкарев[1]
- Алексей Гончаров[2]
- Дарина Двинских[3]
- Андрей Задаянчук[4]
- Александр Златов[5]
- Роман Исаченко[6]
- Радослав Нейчев[7]
- Андрей Саитгалин[8]
4
5
6
А1
A2
- Даниил Кононенко
- Михаил Кузнецов
- Раиса Джамтырова
- Илья Фадеев
A3+
- Кирилл Павлов
- Алексей Зайцев
- Константин Скипор
- Дмитрий Крылов Krylov2011HyperParams
- Екатерина Крымова [9], [10], zldm.ru
- Роман Сологуб [11]
- Андрей Гущин
- Татьяна Казакова [12]
- Григорий Пташко [13]
Репозитории алгоритмов
- https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/ Alrorithms of machine learning
- https://mvr.svn.sourceforge.net/projects/svnroot/mvr Multivariate regression composer
- https://dmba.svn.sourceforge.net/projects/svnroot/dmba Lectures at University-Siegen
Инструменты
MikTeX | LaTex interpreter | 2.9 - ok |
Ramus | IDEF0 Editor | |
GhostScript | PS/PDF render | 32-bit (change to 64) |
GSview | PS PDF Viewer | 64-bit |
EPSViewer | EPS Viewer | 32-bit |
JabRef | Bibliography reference manager | |
Tortoise SVN | Interface to Subversion control | 64-bit only for Windows7 |
Daemon-Tools | Windows7-version only, not installed, not used | |
Kaspersky Internet Security | Antivirus | |
WinMerge | Compare two files or folders | |
Microsoft Office | Is it possible to | change it for OpenOffice? |
GoodSync | External HDD syncro | |
Skypeor Full version for Win 8.1 | IP telephone | strijov |
WinEdt6 | vs WinEdt5.3 | |
Lizardtech DjVu Browser | Scanned books | Plug-in |
InkScape | Graphics with EPS and TeX export | |
Настройки
- Поиск в Windows 7: флаг, параметры индексирования, дополнительно, типы файлов: [TeX, m], индексировать содержимое. Добавить папки.
Научные интересы
|
- Теория категорий в распознавании образов
"Я приветствую полугруппу, где бы я ее ни встретил, а встречается она повсюду. Впрочем, от друзей я слышал, что в математике попадаются объекты, отличные от полугрупп" (Эйнар Хилле). Умение видеть алгебраические структуры при решении прикладных задач избавляет исследователя от необходимости изобретать велосипед и показывает, что отнюдь не все измеряемые данные погружены в привычное евклидово пространство. Описанием (а точнее — обобщением и специализацией) различных алгебраических структур занимается теория категорий. "Язык категорий воплощает 'социологический' подход к математическому объекту: группа или пространство рассматривается не как множество с внутренне присущей ему структурой, но как член сообщества себе подобных" (Ю.И. Манин). Сейчас язык теории категорий активно используется в математической физике — там, где модели, описывающие физические процессы, весьма сложны. Применение этого языка при решении прикладных задач распознавания образов позволит получить ясные содержательные определения в сложных ситуациях.
- Индуктивное порождение и выбор регрессионных моделей
Задачи отыскания регрессионных зависимостей являются большой самостоятельной областью и, кроме этого, появляются в качестве элементов задач распознавания образов. Задачи восстановления регрессии отличаются от задач классификации тем, что на первые наложено требование непрерывности отображения. Задачи восстановления регрессии включают в себя принципы информационного и математического моделирования. Согласно принципам информационного моделирования, в тех случаях, когда нет информации о том, какую модель предпочесть, целесообразно выполнить поиск оптимальной модели в фиксированном или индуктивно порождаемом классе моделей. Согласно принципам математического моделирования, полученная модель должна быть объяснимой с точки зрения эксперта; также модель должна быть несложной и достаточно точной. Найти модель, которая бы отвечала стольким требованиям, очень непросто.
- Интегральные индикаторы и экспертные оценки
Интегральный индикатор (рейтинг) — наиболее информативная оценка качества или эффективности сравнимого набора объектов. Для построения интегрального индикатора требуется выбрать и настроить модель — свертку набора частных показателей, каждый из которых характеризует какую-либо одну сторону понятия «качество» или «эффективность». С другой стороны, эксперты могут построить интегральный индикатор набора объектов, опираясь на собственные знания. Однако такой индикатор сложно обосновать. Существуют методы, в которых модели объективизируют экспертные оценки, а экспертные оценки, в свою очередь, позволяют выбирать адекватные модели.
Сотрудничество с журналами Elsevier
- Mathematical and Computer Modelling
- Journal of Computational and Applied Mathematics
- Computers and Mathematics with Applications
- Energy
- Journal of Computational and Applied Mathematics
- Communications in Nonlinear Science and Numerical Simulation
- Energy for Sustainable Development
Каталоги
- ВАК 05.13.17 — Теоретические основы информатики
- ГРНТИ 27.47.23. — Математические проблемы искусственного интеллекта