Критерий Уилкоксона двухвыборочный
Материал из MachineLearning.
(Новая: '''Критерий Уилкоксона двухвыборочный''' (Wilcoxon) — непараметрический статистический критерий == Прим...) |
(перенос статьи из песочницы) |
||
Строка 1: | Строка 1: | ||
- | + | {{TOCright}} | |
- | |||
- | ''' | + | '''Критерий Уилкоксона (Вилкоксона) двухвыборочный''' — [[непараметрический статистический критерий]], используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием [[Теория измерений|порядковой шкалы]]. Имеется [[Критерий_Уилкоксона_для_связных_выборок|аналог]] критерия Уилкоксона для связанных повторных наблюдений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. |
- | + | == Пример задачи == | |
+ | |||
+ | Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является [[Теория измерений|порядковой]]). | ||
== Описание критерия == | == Описание критерия == | ||
- | Заданы две выборки <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>. | + | Заданы две выборки <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n,</tex> в противном случае следует поменять выборки местами. |
- | ''' | + | '''Дополнительное предположение:''' обе выборки [[простая выборка|простые]], объединённая выборка [[независимая выборка|независима]]; |
- | + | ||
- | + | ||
- | '''[[Нулевая гипотеза]]''' <tex>H_0:\; </tex> | + | '''[[Нулевая гипотеза]]''' <tex>H_0:\; \mathbb{P} \{ x<y \} = 1/2. </tex> |
- | ''' | + | '''Вычисление статистики критерия:''' |
+ | # Построить общий вариационный ряд объединённой выборки <tex>x^{(1)} \leq \cdots \leq x^{(m+n)}</tex> и найти ранги <tex>r(x_i),\; r(y_i)</tex> всех элементов обеих выборок в общем вариационном ряду. | ||
+ | # Рассчитать суммы рангов, соответствующих обеим выборкам: | ||
+ | #:<tex>R_x = \sum_{i=1}^m r(x_i);</tex> | ||
+ | #:<tex>R_y = \sum_{i=1}^n r(y_i);</tex> | ||
+ | # Если размеры выборок совпадают (<tex>m=n</tex>), то значение статистики <tex>W</tex> будет равняется одной из сумм рангов <tex>R_x</tex> или <tex>R_y</tex> (любой). Если же выборки не равны, то <tex>W = R_x</tex>, то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика <tex>W</tex> линейно связана со статистикой [[Критерий Уилкоксона-Манна-Уитни|U-критерия Манна-Уитни]]. | ||
- | + | '''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>): | |
- | == | + | Против альтернативы <tex>H_1:\; \mathbb{P} \{ x < y \} \neq 1/2</tex>: |
+ | |||
+ | :если <tex>W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right]</tex> , то нулевая гипотеза отвергается. Здесь <tex>W_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] табличного распределения Уилкоксона с параметрами <tex>m,\,n</tex>. <ref>Кобзарь А. И. Прикладная математическая статистика. — ??? c.</ref><ref>Лапач С. Н. Статистика в науке и бизнесе. — 150 с.</ref> | ||
+ | |||
+ | '''Асимптотический критерий''': | ||
+ | |||
+ | Рассмотрим нормированную и центрированную статистика Уилкоксона: | ||
+ | |||
+ | :<tex>\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}}</tex>; | ||
+ | |||
+ | <tex>\tilde W</tex> асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы <tex>H_1</tex>) отвергается, если <tex> |\tilde W| > \Phi_{1-\alpha/2} </tex>, где <tex>\Phi_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] стандартного нормального распределения. | ||
+ | |||
+ | Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до <tex>m = n = 8</tex>.<ref>Лапач С. Н. Статистика в науке и бизнесе. — 161 с.</ref> | ||
+ | |||
+ | При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее: | ||
+ | |||
+ | :<tex>\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2},</tex><ref>Кобзарь А. И. Прикладная математическая статистика. — 454 c.</ref><ref>Лагутин М. Б. Наглядная математическая статистика. — 206 с.</ref> | ||
+ | |||
+ | :где <tex>k</tex> - количество только тех связок, в которые входят ранги как одной, так и другой выборок, <tex>t_1, \ldots, t_k</tex> - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину <tex>\tilde W</tex> не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1. | ||
+ | |||
+ | == Применение критерия == | ||
+ | |||
+ | В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда <tex>\mathbb{P} \{ x<y \} = 1/2</tex>, и средние выборок не совпадают.<ref>Орлов А. И. Эконометрика. — 79 с.</ref> При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки. <ref>Орлов А. И. Эконометрика. — 83 с.</ref> | ||
+ | |||
+ | {{TOCright}} | ||
+ | |||
+ | Критерий является аналогом критерия [[Критерий Стьюдента|t-критерия Стьюдента для независимых выборок]] в случае закона распределения, отличного от нормального, либо данных, измеренных с использованием порядковой шкалы. Для нормально распределённых совокупностей следует использовать более мощный t-критерий. | ||
+ | |||
+ | == Критерий Вилкоксона и [[Критерий Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]] == | ||
+ | |||
+ | Статистики критериев Вилкоксона и Вилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.<ref>Орлов А. И. Эконометрика. — 75 c.</ref> Оба они проверяют одну и ту же гипотезу и их границы применимости также совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Вилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,<ref>Лапач С. Н. Статистика в науке и бизнесе. — 160 с.</ref>, а в случае равных дисперсий применять [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Лапач С. Н. Статистика в науке и бизнесе. — 118 с.</ref> | ||
+ | |||
+ | Проведём эксперимент: будем строить график [[Достигаемый уровень значимости|достигаемого уровня значимости]] как функцию размера выборок и параметров распределения, усреднённого по нескольким десяткам экспериментов. | ||
+ | |||
+ | ''графики'' | ||
+ | |||
+ | == Примечания == | ||
+ | <references/> | ||
== Литература == | == Литература == | ||
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с. | # ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с. | ||
- | + | # ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с. | |
+ | # ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — 576 с. | ||
+ | # ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — §4.5. | ||
== Ссылки == | == Ссылки == | ||
- | * [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез. | + | * [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез. |
- | * [[ | + | * [[Критерий Уилкоксона-Манна-Уитни]] |
+ | * [[Критерий Уилкоксона для связных выборок]] | ||
[[Категория:Статистические тесты]] | [[Категория:Статистические тесты]] |
Версия 21:03, 24 декабря 2009
|
Критерий Уилкоксона (Вилкоксона) двухвыборочный — непараметрический статистический критерий, используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Пример задачи
Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является порядковой).
Описание критерия
Заданы две выборки в противном случае следует поменять выборки местами.
Дополнительное предположение: обе выборки простые, объединённая выборка независима;
Вычисление статистики критерия:
- Построить общий вариационный ряд объединённой выборки и найти ранги всех элементов обеих выборок в общем вариационном ряду.
- Рассчитать суммы рангов, соответствующих обеим выборкам:
- Если размеры выборок совпадают (), то значение статистики будет равняется одной из сумм рангов или (любой). Если же выборки не равны, то , то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика линейно связана со статистикой U-критерия Манна-Уитни.
Критерий (при уровне значимости ):
Против альтернативы :
- если , то нулевая гипотеза отвергается. Здесь есть -квантиль табличного распределения Уилкоксона с параметрами . [1][1]
Асимптотический критерий:
Рассмотрим нормированную и центрированную статистика Уилкоксона:
- ;
асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы ) отвергается, если , где есть -квантиль стандартного нормального распределения.
Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до .[1]
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:
- где - количество только тех связок, в которые входят ранги как одной, так и другой выборок, - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1.
Применение критерия
В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда , и средние выборок не совпадают.[1] При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки. [1]
Критерий является аналогом критерия t-критерия Стьюдента для независимых выборок в случае закона распределения, отличного от нормального, либо данных, измеренных с использованием порядковой шкалы. Для нормально распределённых совокупностей следует использовать более мощный t-критерий.
Критерий Вилкоксона и U-критерий Манна-Уитни
Статистики критериев Вилкоксона и Вилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.[1] Оба они проверяют одну и ту же гипотезу и их границы применимости также совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Вилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,[1], а в случае равных дисперсий применять U-критерий Манна-Уитни.[1]
Проведём эксперимент: будем строить график достигаемого уровня значимости как функцию размера выборок и параметров распределения, усреднённого по нескольким десяткам экспериментов.
графики
Примечания
Литература
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
- Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — 576 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — §4.5.
Ссылки
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Критерий Уилкоксона-Манна-Уитни
- Критерий Уилкоксона для связных выборок
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |