Машинное обучение
Материал из MachineLearning.
Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться. Различают два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на выявлении общих закономерностей по частным эмпирическим данным. Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний. Дедуктивное обучение принято относить к области экспертных систем, поэтому термины машинное обучение и обучение по прецедентам можно считать синонимами.
Машинное обучение находится на стыке математической статистики, методов оптимизации и классических математических дисциплин, но имеет также и собственную специфику, связанную с проблемами вычислительной эффективности и переобучения. Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением информации и интеллектуальным анализом данных (Data Mining).
Наиболее теоретические разделы машинного обучения объединены в отдельное направление, теорию вычислительного обучения (Computational Learning Theory, COLT).
Машинное обучение — не только математическая, но и практическая, инженерная дисциплина. Чистая теория, как правило, не приводит сразу к методам и алгоритмам, применимым на практике. Чтобы заставить их хорошо работать, приходится изобретать дополнительные эвристики, компенсирующие несоответствие сделанных в теории предположений условиям реальных задач. Практически ни одно исследование в машинном обучении не обходится без эксперимента на модельных или реальных данных, подтверждающего практическую работоспособность метода.
Общая постановка задачи обучения по прецедентам
Дано конечное множество прецедентов (объектов, ситуаций), по каждому из которых собраны (измерены) некоторые данные. Данные о прецеденте называют также его описанием. Совокупность всех имеющихся описаний прецедентов называется обучающей выборкой. Требуется по этим частным данным выявить общие зависимости, закономерности, взаимосвязи, присущие не только этой конкретной выборке, но вообще всем прецедентам, в том числе тем, которые ещё не наблюдались. Говорят также о восстановлении зависимостей по эмпирическим данным — этот термин был введён в работах Вапника и Червоненкиса.
Наиболее распространённым способом описания прецедентов является признаковое описание. Фиксируется совокупность n показателей, измеряемых у всех прецедентов. Если все n показателей числовые, то признаковые описания представляют собой числовые векторы размерности n. Возможны и более сложные случаи, когда прецеденты описываются временными рядами или сигналами, изображениями, видеорядами, текстами, попарными отношениями сходства или интенсивности взаимодействия, и т. д.
Для решения задачи обучения по прецедентам в первую очередь фиксируется модель восстанавливаемой зависимости. Затем вводится функционал качества, значение которого показывает, насколько хорошо модель описывает наблюдаемые данные. Алгоритм обучения (learning algorithm) ищет такой набор параметров модели, при котором функционал качества на заданной обучающей выборке принимает оптимальное значение. Процесс настройки (fitting) модели по выборке данных в большинстве случаев сводится к применению численных методов оптимизации.
Замечание о терминологии. В зарубежных публикациях термин algorithm употребляется только в указанном выше смысле, то есть это вычислительная процедура, которая по обучающей выборке производит настройку модели. Выходом алгоритма обучения является функция, аппроксимирующая неизвестную (восстанавливаемую) зависимость. В задачах классификации аппроксимирующую функцию принято называть классификатором (classifier), концептом (concept) или гипотезой (hypothesys); в задачах восстановления регрессии — функцией регрессии; иногда просто функцией. В русскоязычной литературе аппроксимирующую функцию также называют алгоритмом, подчёркивая, что и она должна допускать эффективную компьютерную реализацию.
Типология задач обучения по прецедентам
Основные стандартные типы задач
- Обучение с учителем (supervised learning) — наиболее распространённый случай. Каждый прецедент представляет собой пару «объект, ответ». Требуется найти функциональную зависимость ответов от описаний объектов и построить алгоритм, принимающий на входе описание объекта и выдающий на выходе ответ. Функционал качества обычно определяется как средняя ошибка ответов, выданных алгоритмом, по всем объектам выборки.
- Задача классификации (classification) отличается тем, что множество допустимых ответов конечно. Их называют метками классов (class label). Класс — это множество всех объектов с данным значением метки.
- Задача регрессии (regression) отличается тем, что допустимым ответом является действительное число или числовой вектор.
- Задача ранжирования (learning to rank) отличается тем, что ответы надо получить сразу на множестве объектов, после чего отсортировать их по значениям ответов. Может сводиться к задачам классификации или регрессии. Часто применяется в информационном поиске и анализе текстов.
- Задача прогнозирования (forecasting) отличается тем, что объектами являются отрезки временных рядов, обрывающиеся в тот момент, когда требуется сделать прогноз на будущее. Для решения задач прогнозирования часто удаётся приспособить методы регрессии или классификации, причём во втором случае речь идёт скорее о задачах принятия решений.
- Обучение без учителя (unsupervised learning). В этом случае ответы не задаются, и требуется искать зависимости между объектами.
- Задача кластеризации (clustering) заключается в том, чтобы сгруппировать объекты в кластеры, используя данные о попарном сходстве объектов. Функционалы качества могут определяться по-разному, например, как отношение средних межкластерных и внутрикластерных расстояний.
- Задача поиска ассоциативных правил (association rules learning). Исходные данные представляются в виде признаковых описаний. Требуется найти такие наборы признаков, и такие значения этих признаков, которые особенно часто (неслучайно часто) встречаются в признаковых описаниях объектов.
- Задача фильтрации выбросов (outliers detection) — обнаружение в обучающей выборке небольшого числа нетипичных объектов. В некоторых приложениях их поиск является самоцелью (например, обнаружение мошенничества). В других приложениях эти объекты являются следствием ошибок в данных или неточности модели, то есть шумом, мешающим настраивать модель, и должны быть удалены из выборки, см. также робастные методы и одноклассовая классификация.
- Задача построения доверительной области (quantile estimation) — области минимального объёма с достаточно гладкой границей, содержащей заданную долю выборки.
- Задача сокращения размерности (dimensionality reduction) заключается в том, чтобы по исходным признакам с помощью некоторых функций преобразования перейти к наименьшему числу новых признаков, не потеряв при этом никакой существенной информации об объектах выборки. В классе линейных преобразований наиболее известным примером является метод главных компонент.
- Задача заполнения пропущенных значений (missing values) — замена недостающих значений в матрице объекты–признаки их прогнозными значениями.
- Частичное обучение (semi-supervised learning) занимает промежуточное положение между обучением с учителем и без учителя. Каждый прецедент представляет собой пару «объект, ответ», но ответы известны только на части прецедентов. Пример прикладной задачи — автоматическая рубрикация большого количества текстов при условии, что некоторые из них уже отнесены к каким-то рубрикам.
- Трансдуктивное обучение (transductive learning). Дана конечная обучающая выборка прецедентов. Требуется по этим частным данным сделать предсказания отностительно других частных данных — тестовой выборки. В отличие от стандартной постановки, здесь не требуется выявлять общую закономерность, поскольку известно, что новых тестовых прецедентов не будет. С другой стороны, появляется возможность улучшить качество предсказаний за счёт анализа всей тестовой выборки целиком, например, путём её кластеризации. Во многих приложениях трансдуктивное обучение практически не отличается от частичного обучения.
- Обучение с подкреплением (reinforcement learning). Роль объектов играют пары «ситуация, принятое решение», ответами являются значения функционала качества, характеризующего правильность принятых решений (реакцию среды). Как и в задачах прогнозирования, здесь существенную роль играет фактор времени. Примеры прикладных задач: формирование инвестиционных стратегий, автоматическое управление технологическими процессами, самообучение роботов, и т.д.
- Динамическое обучение (online learning) может быть как обучением с учителем, так и без учителя. Специфика в том, что прецеденты поступают потоком. Требуется немедленно принимать решение по каждому прецеденту и одновременно доучивать модель зависимости с учётом новых прецедентов. Как и в задачах прогнозирования, здесь существенную роль играет фактор времени.
- Активное обучение (active learning) отличается тем, что обучаемый имеет возможность самостоятельно назначать следующий прецедент, который станет известен. См. также Планирование экспериментов.
- Метаобучение (meta-learning или learning-to-learn) отличается тем, что прецедентами являются ранее решённые задачи обучения. Требуется определить, какие из используемых в них эвристик работают более эффективно. Конечная цель — обеспечить постоянное автоматическое совершенствование алгоритма обучения с течением времени.
- Многозадачное обучение (multi-task learning). Набор взаимосвязанных или схожих задач обучения решается одновременно, с помощью различных алгоритмов обучения, имеющих схожее внутренне представление. Информация о сходстве задач между собой позволяет более эффективно совершенствовать алгоритм обучения и повышать качество решения основной задачи.
- Индуктивный перенос (inductive transfer). Опыт решения отдельных частных задач обучения по прецедентам переносится на решение последующих частных задач обучения. Для формализации и сохранения этого опыта применяются реляционные или иерархические структуры представления знаний.
- Иногда к метаобучению ошибочно относят построение алгоритмических композиций, в частности, бустинг; однако в композициях несколько алгоритмов решают одну и ту же задачу, тогда как метаобучение предполагает, что решается много разных задач.
Специфические прикладные задачи
Некоторые задачи, возникающие в прикладных областях, имеют черты сразу нескольких стандартных типов задач обучения, поэтому их трудно однозначно отнести к какому-то одному типу.
- Формирование инвестиционного портфеля (portfolio selection) — это динамическое обучение с подкреплением, в котором очень важен отбор информативных признаков. Роль признаков играют финансовые инструменты. Состав оптимального набора признаков (портфеля) может изменяться со временем. Функционалом качества является долгосрочная прибыль от инвестирования в данную стратегию управления портфелем.
- Коллаборативная фильтрация (collaborative filtering) — это прогнозирование предпочтений пользователей на основе их прежних предпочтений и предпочтений схожих пользователей. Применяются элементы классификации, кластеризации и восполнения пропущенных данных. См. также Персонализация и Анализ клиентских сред.
Приложения
Целью машинного обучения является частичная или полная автоматизация решения сложных профессиональных задач в самых разных областях человеческой деятельности. Машинное обучение имеет широкий спектр приложений:
- Категория:Приложения в биоинформатике
- Категория:Приложения в медицине
- Категория:Приложения в геологии и геофизике
- Категория:Приложения в социологии
- Категория:Приложения в экономике
- Кредитный скоринг (credit scoring)
- Предсказание ухода клиентов (churn prediction)
- Обнаружение мошенничества (fraud detection)
- Биржевой технический анализ (technical analysis)
- Биржевой надзор (market surveillance)
- Категория:Приложения в технике
- Категория:Приложения в офисной автоматизации
Сфера применений машинного обучения постоянно расширяется. Повсеместная информатизация приводит к накоплению огромных объёмов данных в науке, производстве, бизнесе, транспорте, здравоохранении. Возникающие при этом задачи прогнозирования, управления и принятия решений часто сводятся к обучению по прецедентам. Раньше, когда таких данных не было, эти задачи либо вообще не ставились, либо решались совершенно другими методами.
Подходы и методы
Подход к задачам обучения — это концепция, парадигма, точка зрения на процесс обучения, приводящая к набору базовых предположений, гипотез, эвристик, на основе которых строится модель, функционал качества и методы его оптимизации.
Разделение методов «по подходам» довольно условно. Разные подходы могут приводить к одной и той же модели, но разным методам её обучения. В некоторых случаях эти методы отличаются очень сильно, в других — совсем немного и «плавно трансформируются» друг в друга путём незначительных модификаций.
Статистическая классификация
В статистике решение задач классификации принято называть дискриминантным анализом.
Байесовская теория классификации основана на применении оптимального байесовского классификатора и оценивании плотностей распределения классов по обучающей выборке. Различные методы оценивания плотности порождают большое разнообразие байесовских классификаторов. Среди них можно выделить три группы методов:
Параметрическое оценивание плотности
Непараметрическое оценивание плотности
Оценивание плотности как смеси параметрических плотностей
Несколько особняком стоит наивный байесовский классификатор, который может быть как параметрическим, так и непараметрическим. Он основан на нереалистичном предположении о статистической независимости признаков. Благодаря этому метод чрезвычайно прост.
Другие теоретико-вероятностные и статистические подходы:
Классификация на основе сходства
Метрические алгоритмы классификации применяются в тех задачах, где удаётся естественным образом задавать объекты не их признаковыми описаниями, а матрицей попарных расстояний между объектами. Классификация объектов по их сходству основана на гипотезе компактности, которая гласит, что в «хорошей задаче» схожие объекты чаще лежат в одном классе, чем в разных.
Метрические алгоритмы относятся к методам рассуждения на основе прецедентов (Case Based Reasoning, CBR}. Здесь действительно можно говорить о «рассуждениях», так как на вопрос «почему объект u был отнесён к классу y?» алгоритм может дать понятный эксперту ответ: «потому, что имеются прецеденты — схожие с~ним объекты, принадлежащие классу y», и~предъявить список этих прецедентов.
Наиболее известные метрические алгоритмы классификации:
- метод ближайших соседей;
- метод парзеновского окна;
- метод потенциальных функций;
- метод радиальных базисных функций;
- отбор эталонных объектов.
Классификация на основе разделимости
Большая группа методов классификации основана на явном построении разделяющей поверхности в пространстве объектов. Из них чаще всех применяются Линейные классификаторы:
- линейный дискриминант Фишера;
- однослойный персептрон;
- логистическая регрессия;
- машина опорных векторов = Метод опорных векторов = SVM.
Нейронные сети
Нейронные сети основаны не принципе коннективизма — в них соединяется большое количество относительно простых элементов, а обучение сводится к построению оптимальной структуры связей и настройке параметров связей.
- персептрон;
- однослойный персептрон;
- многослойный персептрон;
- метод стохастического градиента
- метод обратного распространения ошибки = Backpropagation = Backprop
- Нейронная сеть Кохонена ;
- гибридная сеть встречного распространения;
- сеть радиальных базисных функций;
- оптимальное усечение сети = Optimal Brain Damage = OBD.
Индукция правил (поиск закономерностей)
Категория:Логические алгоритмы классификации представляют собой композиции простых, легко интерпретируемых правил.
- решающее дерево;
- решающий список;
- решающий лес;
- тестовый алгоритм;
- алгоритм вычисления оценок;
- дерево регрессии;
- ассоциативные правила = правила ассоциации.
Кластеризация
- графовые алгоритмы кластеризации;
- cтатистические алгоритмы кластеризации;
- Алгоритм ФОРЕЛЬ;
- Алгоритм k средних = k-means;
- иерархическая кластеризация;
- ко-кластеризация;
- Нейронная сеть Кохонена;
- Ансамбль кластеризаторов,
Регрессия
Алгоритмические композиции
- взвешенное голосование;
- бустинг;
- бэггинг;
- метод случайных подпространств;
- метод комитетов;
- смесь экспертов.
Сокращение размерности
- селекция признаков = отбор признаков;
- метод главных компонент;
- метод независимых компонент;
- многомерное шкалирование.
Выбор модели
- минимизация эмпирического риска;
- структурная минимизация риска;
- минимум длины описания;
- критерий Акаике = AIC;
- байесовский информационный критерий = BIC;
- скользящий контроль;
- извлечение признаков;
- метод группового учёта аргументов = МГУА = самоорганизация моделей;
- случайный поиск с адаптацией;
- генетический алгоритм.
Байесовский вывод
- байесовский вывод
- байесовский информационный критерий = BIC;
- метод релевантных векторов = RVM
- байесовская сеть
Конференции
Основные международные конференции — ICML, NIPS, ICPR, COLT.
Международные конференции в странах СНГ — ИОИ.
Основные всероссийские конференции — ММРО, РОАИ.
См. также Рейтинг международных научных конференций.
Ссылки
- Google Machine Learning News — форумы и новости по машинному обучению на Гугле
- hunch.net — блог Джона Лангфорда (John Langford) по проблемам машинного обучения
- ML OSS (Machine learning open source software) — коллективный сайт разработчиков открытого софта для машинного обучения
- KDnuggets — крупнейший портал по интеллектуальному анализу данных, поддерживаемый Григорием Пятецким-Шапиро, одним из идеологов Data Mining
- ML challenges — cоревнования в решении задач машинного обучения
- KDNet (Knowledge Discovery Network of Excellence) — международный проект, объединяющий представителей науки и бизнеса, решающих практические задачи интеллектуального анализа данных
- MLpedia — вики-ресурс по машинному обучению, в последнее время почему-то недоступен
- Wikipedia — категория Machine Learning в англоязычной Википедии
- CiteSeer — основной источник знаний по Computer Science
- CiteSeerX — альфа-версия нового CiteSeer, пока глючная, но зато пополняемая
См. также
- Как обучаются машины? Научно-популярная статья (Н.Ю.Золотых)
- Машинное обучение (курс лекций, Н.Ю.Золотых)
- Машинное обучение (курс лекций, К.В.Воронцов)
- Математические методы распознавания образов (курс лекций, А.Е. Лепский, А.Г. Броневич)
- Байесовские методы машинного обучения (курс лекций, Д.П. Ветров, Д.А. Кропотов, 2009)
- Прикладная регрессия и оптимизация (курс лекций, B.В.Стрижов)
- Все учебные курсы на MachineLearning.ru
Курсы лекций
- Воронцов К. В. Математические методы обучения по прецедентам. Курс лекций. МФТИ. 2006
- Сергей Николенко. Курс лекций «Самообучающиеся системы»
- Сергей Николенко. Курс лекций «Вероятностное обучение»
Использованная литература
- Айвазян С. А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: основы моделирования и первичная обработка данных. — М.: Финансы и статистика, 1983.
- Айвазян С. А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: исследование зависимостей. — М.: Финансы и статистика, 1985.
- Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
- Вапник В. Н., Червоненкис А. Я. Теория распознавания образов. — М.: Наука, 1974.
- Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
- Журавлев Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
- Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.
- Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.
- Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. — Springer, 2001. ISBN 0-387-95284-5.
- MacKay D. On-line book: Information Theory, Inference, and Learning Algorithms. — 2005.
- Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.
- Schölkopf B., Smola A.J. Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. — MIT Press, Cambridge, MA, 2002 ISBN 13-978-0-262-19475-4 [1]
- Vapnik V.N. Statistical learning theory. — N.Y.: John Wiley & Sons, Inc., 1998. [2]
- Witten I.H., Frank E. Data Mining: Practical Machine Learning Tools and Techniques (Second Edition). — Morgan Kaufmann, 2005 ISBN 0-12-088407-0 [3]