Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическое моделирование рассматривается как ключевая математическая технология перспективных информационно-поисковых систем нового поколения, основанных на парадигме семантического разведочного поиска (exploratory search). Рассматриваются также прикладные задачи классификации, сегментации и суммаризации текстов, задачи анализа данных социальных сетей и рекомендательных систем. Развивается многокритериальный подход к построению композитных тематических моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Рассматриваются способы измерения и оптимизации важнейших свойств тематических моделей — правдоподобия, интерпретируемости, устойчивости, полноты. Рассматриваются задачи анализа и классификации символьных последовательностей неязыковой природы, в частности, аминокислотных и нуклеотидных последовательностей, дискретизированных биомедицинских сигналов. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Материалы для первого ознакомления:

Обзорная презентация: (PDF, 4,4 МБ) — обновление 14.03.2016.
Видеолекция на ПостНауке: Разведочный информационный поиск.

Основной материал:

Вероятностное тематическое моделирование: обзор моделей и аддитивная регуляризация — обновление 19.05.2018.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Программа курса

Условием сдачи спецкурса является выполнение индивидуальных практических заданий.

Введение

Презентация: (PDF, 1,2 МБ) — обновление 15.02.2018.

Цели и задачи тематического моделирования.

  • Понятие «темы», цели и задачи тематического моделирования.
  • Основные предположения. Гипотеза «мешка слов» (bag-of-words). Методы предварительной обработки текстов.
  • Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости.
  • Порождающая модель документа как вероятностной смеси тем.
  • Упрощённая вероятностная модель текста и элементарное решение обратной задачи
  • Постановка обратной задачи восстановления параметров модели по данным.

Математический инструментарий.

Аддитивная регуляризация тематических моделей.

  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • EM-алгоритм и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
  • Вероятностный латентный семантический анализ (probabilistic latent semantic analysis, PLSA).
  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага). Оффлайновый регуляризованный EM-алгоритм.
  • Онлайновый регуляризованный EM-алгоритм. Распараллеливание.
  • Библиотека BigARTM.

Обзор базовых инструментов

Александр Романенко, Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017.

Предварительная обработка текстов

  • Парсинг "сырых" данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Аддитивная регуляризация тематических моделей

Презентация: (PDF, 3,1 МБ) — обновление 15.03.2018.

Теория ARTM

  • Мультимодальные тематические модели
  • Регуляризаторы сглаживания и разреживания
  • Разделение тем на предметные и фоновые

Время и пространство

  • Регуляризаторы времени
  • Эксперименты на коллекции пресс-релизов
  • Гео-пространственные модели

Иерархические тематические модели

  • Нисходящая послойная стратегия
  • Оценивание качества тематических иерархий
  • Визуализация иерархии

Разведочный информационный поиск

Презентация: (PDF, 4,5 МБ) — обновление 15.03.2018.

Разведочный информационный поиск

  • Концепция разведочного поиска
  • Визуализация больших текстовых коллекций
  • Сценарий разведочного поиска

Эксперименты с тематическим поиском

  • Методика эксперимента
  • Построение тематической модели
  • Оптимизация гиперпараметров

Эксперименты с тематическими моделями

  • Измерение качества тематической модели
  • Многокритериальное оценивание качества модели
  • Определение числа тем и регуляризатор отбора тем

Дополнительный материал:

  • Разведочный информационный поиск (exploratory search). Видео.

Мультимодальные тематические модели

Презентация: (PDF, 1,4 МБ) — обновление 22.03.2018.

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Социальные сети.

  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Тематические модели совстречаемости слов

Презентация: (PDF, 1,9 МБ) — обновление 29.03.2018.

Мультиграммные модели.

  • Модель BigramTM.
  • Модель Topical N-grams (TNG).
  • Мультимодальная мультиграммная модель.

Автоматическое выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевой синтаксический анализатор SyntaxNet.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
  • Понятие когерентности (согласованности). Экспериментально установленная связь когерентности и интерпретируемости.
  • Регуляризаторы когерентности.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Байесовское обучение тематических моделей

Презентация: (PDF, 1,5 МБ) — обновление 13.04.2018.

EM-алгоритм.

  • Задачи оценивания скрытых параметров вероятностной модели.
  • EM-алгоритм для максимизации неполного правдоподобия. Сходимость в слабом смысле.
  • EM-алгоритм для модели PLSA.
  • EM-алгоритм с регуляризацией.

Методы оценивания параметров в модели LDA.

  • Распределение Дирихле и его свойства. Сопряжённость с мультиномиальным распределением.
  • Максимизация апостериорной вероятности для модели LDA.
  • Вариационный байесовский вывод для модели LDA.
  • Сэмплирование Гиббса для модели LDA.
  • Оптимизация гиперпараметров распределения Дирихле.

Языки описания вероятностных порождающих моделей.

  • Графическая плоская нотация (plate notation). Stop using plate notation.
  • Псевдокод порождающего процесса (genarative story).
  • Постановки оптимизационных задач.
  • Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.

Дополнительный материал:

Тематическая сегментация

Презентация: (PDF, 2,0 МБ) — обновление 16.04.2018.

Модели связного текста.

  • Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
  • Контекстная документная кластеризация (CDC).
  • Метод лексических цепочек.

Тематическая сегментация.

  • Метод TopicTiling. Критерии определения границ сегментов.
  • Критерии качества сегментации. Оптимизация параметров модели TopicTiling.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Визуализация и суммаризация тем

Презентация: (PDF, 6,7 МБ) — обновление 01.05.2018.

Средства визуализации тематических моделей.

  • Минимальные средства визуализации.
  • Визуализация кластерных структур.
  • Визуализация темпоральных, иерархических, сегментирующих моделей.

Визуализатор VisARTM.

  • Проект VisARTM.
  • Обзор средств визуализации VisARTM.
  • Задача построения тематического спектра.

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации ROUGE.

Анализ разнородных данных

Презентация: (PDF, 1,6 МБ) — обновление 03.05.2018.

Трёхматричные и гиперграфовые модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Определение числа тем.

  • Регуляризатор отбора тем.
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Максимизация релевантности, покрытия и различности.


Литература

  1. Воронцов К. В. Обзор вероятностных тематических моделей. 2018.
  2. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  3. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  4. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  5. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
  6. Янина А. О., Воронцов К. В. Мультимодальные тематические модели для разведочного поиска в коллективном блоге // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.


Ссылки

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Личные инструменты