Участник:Василий Ломакин/Коэффициент корреляции Кенделла

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 10: Строка 10:
'''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. Коэффициент является [[Ранговая корреляция|ранговым]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
'''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. Коэффициент является [[Ранговая корреляция|ранговым]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
-
==Определение==
+
==Описание==
Заданы две выборки <tex>x = (x_1,\ldots,x_n),\; y = (y_1,\ldots,y_n)</tex>.
Заданы две выборки <tex>x = (x_1,\ldots,x_n),\; y = (y_1,\ldots,y_n)</tex>.
-
'''Коэффициент корреляции Кенделла''' вычисляется по формуле
+
'''Вычисление корреляции Кенделла'''
 +
 
 +
Коэффициент корреляции Кенделла вычисляется по формуле:
::<tex>\tau=1-\frac{4}{n(n-1)}R</tex>, где <tex>R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right]</tex> — количество инверсий, образованных величинами <tex>y_i</tex>, расположенными в порядке возрастания соответствующих <tex>x_i</tex>.
::<tex>\tau=1-\frac{4}{n(n-1)}R</tex>, где <tex>R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right]</tex> — количество инверсий, образованных величинами <tex>y_i</tex>, расположенными в порядке возрастания соответствующих <tex>x_i</tex>.
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную.
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную.
-
==Вывод критерия Кенделла==
+
'''Обоснование критерия Кенделла'''
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть:
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть:
Строка 35: Строка 37:
'''[[Нулевая гипотеза]]''' <tex>H_0</tex>: Выборки <tex>x</tex> и <tex>y</tex> не коррелируют.
'''[[Нулевая гипотеза]]''' <tex>H_0</tex>: Выборки <tex>x</tex> и <tex>y</tex> не коррелируют.
-
'''Статистика критерия:'''
+
'''Статистика критерия:''' <tex>\tau.</tex>
-
::<tex>\frac{\tau}{\sqrt{D_{\tau}}},</tex>
+
 
-
где <tex>D_{\tau}=\frac{2(2n+5)}{9n(n-1)}</tex>.
+
'''Асимптотический критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
 +
 
 +
Рассмотрим центрированную и нормированную статистику Кенделла:
 +
 
 +
::<tex>\tilde{\tau} = \frac{\tau}{\sqrt{D_{\tau}}},</tex>, где <tex>D_{\tau}=\frac{2(2n+5)}{9n(n-1)}</tex>.
 +
 
 +
Нулевая гипотеза отвергается (против альтернативы <tex>H_1</tex> - наличие корреляции), если:
-
При <tex>n\geq 10</tex> статистику критерия можно приблизить стандартным нормальным распределением: <tex>\frac{\tau}{\sqrt{D_{\tau}}}\sim N(0,1)</tex>.
+
:: <tex> \tilde{\tau} \ge \Phi_{1-\alpha/2} </tex>, где <tex>\Phi_{1-\alpha}</tex> есть <tex>(1-\alpha)</tex>-[[квантиль]] стандартного нормального распределения.
-
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
+
Аппроксимация удовлетворительно работает начиная с <tex>n\geq 10</tex>.<ref>Кобзарь А. И. Прикладная математическая статистика. 625 с.</ref>
-
*против альтернативы <tex>H_1</tex>: наличие корреляции
+
-
:: если <tex>|\tau| > \tau_{\alpha}=u_{\alpha}\cdot\sqrt{D_{\tau_{xy}}} </tex>, где <tex>u_{\alpha}</tex> — <tex>\alpha</tex>-квантиль стандартного нормального распределения.
+
==Связь коэффициентов корреляции Кенделла и [[коэффициент корреляции Пирсона|Пирсона]]==
==Связь коэффициентов корреляции Кенделла и [[коэффициент корреляции Пирсона|Пирсона]]==
Строка 56: Строка 62:
::<tex>R_y=(R_{y_1},\ldots,R_{y_n})</tex>, где <tex>R_{y_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>y</tex>.
::<tex>R_y=(R_{y_1},\ldots,R_{y_n})</tex>, где <tex>R_{y_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>y</tex>.
-
Проведем операцию упорядочевания рангов.
+
Проведем операцию упорядочивания рангов.
Расположим ряд значений <tex>x_i</tex> в порядке возрастания величины: <tex>x_1\leq x_2\leq\cdots\leq x_n</tex>. Тогда последовательность рангов упорядоченной выборки <tex>x</tex> будет представлять собой последовательность натуральных чисел <tex>1,2,\cdots,n</tex>. Значения <tex>y</tex>, соответствующие значениям <tex>x</tex>, образуют в этом случае некоторую последовательность рангов <tex>T=(T_1,\cdots,T_n)</tex>:
Расположим ряд значений <tex>x_i</tex> в порядке возрастания величины: <tex>x_1\leq x_2\leq\cdots\leq x_n</tex>. Тогда последовательность рангов упорядоченной выборки <tex>x</tex> будет представлять собой последовательность натуральных чисел <tex>1,2,\cdots,n</tex>. Значения <tex>y</tex>, соответствующие значениям <tex>x</tex>, образуют в этом случае некоторую последовательность рангов <tex>T=(T_1,\cdots,T_n)</tex>:

Версия 11:46, 4 января 2010

Содержание

[1] [2]

TODO:

  1. Орфография, пунктуация
  2. Рисунки

Коэффициент корреляции Кенделла — мера линейной связи между случайными величинами. Коэффициент является ранговым, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Описание

Заданы две выборки x = (x_1,\ldots,x_n),\; y = (y_1,\ldots,y_n).

Вычисление корреляции Кенделла

Коэффициент корреляции Кенделла вычисляется по формуле:

\tau=1-\frac{4}{n(n-1)}R, где R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right] — количество инверсий, образованных величинами y_i, расположенными в порядке возрастания соответствующих x_i.

Коэффициент \tau принимает значения из отрезка [-1;\;1]. Равенство \tau=1 указывает на строгую прямую линейную зависимость, \tau=-1 на обратную.

Обоснование критерия Кенделла

Будем говорить, что пары (x_i,\; y_i) и (x_j,\; y_j) согласованы, если x_i\ <\ y_j и x_i\ <\ y_j или x_i\ >\ y_j и x_i\ >\ y_j, то есть sign(x_j-x_i)sign(y_j-y_i)=1. Пусть S - число согласованных пар, R - число несогласованных пар. Тогда, в предположении, что среди x_i и среди y_i нет совпадений, превышение согласованности над несогласованностью есть:

T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i).

Для измерения степени согласия Кенделл предложил следующий коэффициент:

\tau = \frac{T}{max{T}} = \frac{2T}{n(n-1)} = \frac{2(S-R)}{n(n-1)} = 1 - \frac{4}{n(n-1)}R.

Таким образом, коэффициент \tau (линейно связанный с R) можно считать мерой неупорядоченности второй последовательности относительно первой.[3]

Статистическая проверка наличия корреляции

Нулевая гипотеза H_0: Выборки x и y не коррелируют.

Статистика критерия: \tau.

Асимптотический критерий (при уровне значимости \alpha):

Рассмотрим центрированную и нормированную статистику Кенделла:

\tilde{\tau} = \frac{\tau}{\sqrt{D_{\tau}}},, где D_{\tau}=\frac{2(2n+5)}{9n(n-1)}.

Нулевая гипотеза отвергается (против альтернативы H_1 - наличие корреляции), если:

 \tilde{\tau} \ge \Phi_{1-\alpha/2} , где \Phi_{1-\alpha} есть (1-\alpha)-квантиль стандартного нормального распределения.

Аппроксимация удовлетворительно работает начиная с n\geq 10.[4]

Связь коэффициентов корреляции Кенделла и Пирсона

В случае выборок из нормального распределения коэффициент корреляции Кенделла \tau может быть использован для оценки коэффициента корреляции Пирсона r по формуле:

r=sin{\frac{\pi\tau}{2}}.[5]

Связь коэффициентов корреляции Кенделла и Спирмена

Выборкам x и y соответствуют последовательности рангов:

R_x=(R_{x_1},\ldots,R_{x_n}), где R_{x_i} — ранг i-го объекта в вариационном ряду выборки x;
R_y=(R_{y_1},\ldots,R_{y_n}), где R_{y_i} — ранг i-го объекта в вариационном ряду выборки y.

Проведем операцию упорядочивания рангов.

Расположим ряд значений x_i в порядке возрастания величины: x_1\leq x_2\leq\cdots\leq x_n. Тогда последовательность рангов упорядоченной выборки x будет представлять собой последовательность натуральных чисел 1,2,\cdots,n. Значения y, соответствующие значениям x, образуют в этом случае некоторую последовательность рангов T=(T_1,\cdots,T_n):

(R_{x_i},\;R_{y_i})\rightarrow^{sort} (i,\;T_i),\; i=1,\cdots,n.

Коэффициент корреляции Кенделла \tau и коэффициент корреляции Спирмена \rho выражаются через ранги T_i,\; i=1,\cdots,n следующим образом:

\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};
\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];

Утверждение.[6] Если выборки x и y не коррелируют (выполняется гипотеза H_0), то коэффициент корреляции между величинами \rho и \tau можно вычислить по формуле:

corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}.

История

Критерий был введён в 1938 году известным британским статистиком Морисом Джорджем Кенделлом.

Примечания

  1. Лагутин М. Б. Наглядная математическая статистика. — 223 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — 625 с.
  3. Лагутин М. Б. Наглядная математическая статистика. — 345 с.
  4. Кобзарь А. И. Прикладная математическая статистика. — 625 с.
  5. Кобзарь А. И. Прикладная математическая статистика. — 625 с.
  6. Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 624-626 с.
  2. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346 с.
  3. Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с.

Ссылки

Личные инструменты